2 resultados para Relational Model
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
To store, update and retrieve data from database management systems (DBMS), software architects use tools, like call-level interfaces (CLI), which provide standard functionalities to interact with DBMS. However, the emerging of NoSQL paradigm, and particularly new NoSQL DBMS providers, lead to situations where some of the standard functionalities provided by CLI are not supported, very often due to their distance from the relational model or due to design constraints. As such, when a system architect needs to evolve, namely from a relational DBMS to a NoSQL DBMS, he must overcome the difficulties conveyed by the features not provided by NoSQL DBMS. Choosing the wrong NoSQL DBMS risks major issues with components requesting non-supported features. This paper focuses on how to deploy features that are not so commonly supported by NoSQL DBMS (like Stored Procedures, Transactions, Save Points and interactions with local memory structures) by implementing them in standard CLI.
Resumo:
Fault tolerance allows a system to remain operational to some degree when some of its components fail. One of the most common fault tolerance mechanisms consists on logging the system state periodically, and recovering the system to a consistent state in the event of a failure. This paper describes a general fault tolerance logging-based mechanism, which can be layered over deterministic systems. Our proposal describes how a logging mechanism can recover the underlying system to a consistent state, even if an action or set of actions were interrupted mid-way, due to a server crash. We also propose different methods of storing the logging information, and describe how to deploy a fault tolerant master-slave cluster for information replication. We adapt our model to a previously proposed framework, which provided common relational features, like transactions with atomic, consistent, isolated and durable properties, to NoSQL database management systems.