2 resultados para RU-BASED CATALYSTS
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
A crescente procura de recursos fosseis a que se tem assistido nos ultimos anos, tem resultado num crescimento sem precedentes dos precos, com consequencias imprevisiveis e que levara, no espaco de decadas, ao seu inevitavel esgotamento. A procura de um modelo de desenvolvimento sustentavel, baseado em recursos renovaveis e o grande desafio que se coloca a civilizacao no seculo XXI. A biomassa vegetal, atraves das designadas gBio-refinarias h, e uma alternativa logica para a producao de produtos quimicos e de materiais mas tambem de combustiveis e energia. Os oleos vegetais constituem uma das fracoes da biomassa vegetal, cuja exploracao tem merecido redobrada atencao nos ultimos anos, como fonte de materiais e de combustiveis. Assim, a presente dissertacao tem por objetivo o desenvolvimento de novos materiais polimericos derivados de oleos vegetais, seguindo duas abordagens distintas, nomeadamente a preparacao de polimeros atraves de polimerizacao por etapas e polimerizacao em cadeia (Parte B e C, respetivamente). Em primeiro lugar, foram sintetizados poliesteres alifaticos de cadeia longa a partir de monomeros provenientes do oleo de colza (Capitulo III). A auto-metatese do acido erucico com catalisadores de rutenio, seguida de hidrogenacao da ligacao dupla, originou o acido 1,26-hexacosanodioico, que por sua vez foi convertido em hexacosano-1,26-diol. Subsequentemente, a policondensacao do acido ƒ¿,ƒÖ-dicarboxilico de cadeia longa com o hexacosano-1,26-diol originou o poliester 26,26. O diacido C26 foi tambem polimerizado com outros alcano-diois de cadeia curta, nomeadamente o dodecano-1,12-diol e o butano-1,2-diol, produzindo, respetivamente, os poliesteres 12,26 e 4,26. Estes poliesteres de fontes 100% renovaveis possuem valores de Mn na ordem dos 8-14 kDa e valores de PDI entre 2.1 e 2.7. As propriedades destes poliesteres alifaticos foram avaliadas atraves de varias tecnicas, revelando elevada cristalinidade (com uma estrutura cristalina como a do polietileno) e elevadas temperaturas de fusao (74-104 ‹C), cristalizacao (68-92 ‹C) e degradacao (323-386 ‹C). Em segundo lugar, foram sintetizados polimeros lineares termo-reversiveis a partir de derivados do oleo de ricinio (Capitulo IV). Para tal foram preparados monomeros que incorporam aneis furanicos inseridos atraves do acoplamento tiol-eno, e que posteriormente foram polimerizados pela reacao de Diels-Alder (DA) entre os grupos furano (dieno A) e estruturas complementares do tipo maleimida (dienofilo B). Para as polimerizacoes DA foram consideradas duas abordagens diferentes, nomeadamente (i) o uso de monomeros com dois aneis furanicos terminais em conjunto com uma bismaleimida (sistemas AA+BB) e (ii) a utilizacao de um monomero que incorpora ambos os grupos reativos, furano e maleimida, na sua estrutura (sistema AB). Este estudo demonstrou claramente que ambas as estratégias foram bem sucedidas embora com diferentes resultados em termos da natureza dos produtos obtidos. Estes polímeros lineares apresentam valores relativamente baixos de Tg (-40 to -2 °C) devido à natureza flexível dos grupos separadores das funções reativas, e de Mn (4.5-9.0 kDa) dada a observada tendência de ciclização associada a concentrações baixas de monómero. A aplicação da reação de retro-DA aos polímeros em causa confirmou o seu caráter reversível, ou seja, a possibilidade de promover, em condições controladas, a despolimerização com recuperação dos monómeros de partida. Esta particularidade abre caminhos para materiais macromoleculares originais com aplicações promissoras tais como auto-reparação e reciclabilidade. Em terceiro lugar, sintetizaram-se polímeros não-lineares termo-reversíveis a partir de derivados do óleo de ricínio (Capítulo V). Para tal foram preparados monómeros trifuncionais e posteriormente polimerizados através da reação de DA entre os grupos reativos complementares furano/maleimida. Foram consideradas três abordagens distintas para preparar estes polímeros não-lineares, nomeadamente através da utilização de (i) um monómero bisfurânico em combinação com uma trismaleimida (sistema A2+B3) e (ii) um monómero trisfurânico em conjunto com uma bismaleimida (sistema A3+B2) que originaram materiais ramificados ou reticulados, e ainda (iii) a utilização de monómeros assimetricamente substituídos do tipo A2B ou AB2 capazes de originar estruturas macromoleculares hiper-ramificadas. Todos os sistemas apresentaram valores de Tg perto de 0 °C, o que era de esperar para estes materiais não-lineares. A aplicação da reação de retro-DA comprovou mais uma vez o caráter termo-reversível das polimerizações em causa. Em quarto lugar e último lugar, foram preparados copolímeros de acetato de vinilo (VAc) com monómeros derivados de óleo de girassol (Capítulo VI). Ésteres vinílicos de ácidos gordos (FAVE) foram sintetizados por transvinilação dos ácidos oleico e linoleico com VAc catalisada por um complexo de irídio. Os monómeros vinílicos preparados foram caracterizados e posteriormente homopolimerizados e copolimerizados com VAc através do uso dos grupos vinílicos terminais como função inicial de polimerização. A variação do tipo e quantidade de monómero FAVE e da quantidade de iniciador radicalar originou copolímeros de VAc com valores de Mn na gama de 1.2-3.0 kDa e valores de Tg de -5 a 16 °C. Os copolímeros foram avaliados em testes de cura oxidativa através das insaturações nas suas cadeias alifáticas para formar materiais reticulados, e os resultados sugerem que eles podem ser sistemas efetivos de cura para aplicações como tintas, vernizes e outros tipos de revestimento. Todos os materiais poliméricos preparados ao longo deste trabalho constituem contribuições atrativas para a área dos polímeros oriundos de recursos renováveis e representam uma prova indiscutível de que os óleos vegetais são percursores promissores de materiais macromoleculares com potenciais aplicações.
Resumo:
Atendendo à produção de epóxidos em larga escala e à sua importância como intermediários versáteis, muita atenção tem sido dada à epoxidação de olefinas. Destaca-se a implementação do processo industrial de epoxidação de propileno em fase líquida com tBHP, usando complexos de molibdénio como catalisadores homogéneos (Halcon-ARCO). Neste trabalho foram investigados novos complexos à base de molibdénio como catalisadores (ou precursores) para epoxidação de olefinas em fase líquida. Foi objecto de estudo a identificação das espécies activas e a estabilidade dos catalisadores através da sua separação no final das reacções catalíticas, caracterização e reutilização. Escolheu-se como reacção modelo a epoxidação do ciscicloocteno com tBHP (em decano, tBHPdec), a 55 ºC. Estendeu-se o estudo dos desempenhos catalíticos a diferentes substratos, oxidantes, solventes e métodos de aquecimento. A maior actividade catalítica foi observada para os complexos [MoO2Cl2L2] (L=ligando dialquilamida), mais estáveis e fáceis de manusear que [MoO2Cl2] e complexos análogos com L {THF, MeCN} (Cap. 2). A partir destes complexos podem-se formar in situ espécies activas intermediárias do tipo [(MoO2ClL2)2(μ-O)]. O complexo [MoO2(Lzol)], Lzol= ligando oxazolina quiral (Cap. 3), é um catalisador estável e versátil, activo para a epoxidação de diversas olefinas (selectividades elevadas para epóxidos, mas enantioselectividades baixas), desidrogenação oxidativa de álcoois e sulfoxidação de sulfuretos. O catalisador foi também reciclado eficientemente, usando um líquido iónico (LI). O complexo iónico [MoO2Cl{HC(3,5-Me2pz)3}]BF4 (Cap.4) converteu-se nos complexos activos [{MoO2(HC(3,5-Me2pz)3)}2(μ-O)](BF4)2, [Mo2O3(O2)2(μ-O){HC(3,5-Me2pz)3}] e [MoO3{HC(3,5-Me2pz)3}]; quando dissolvido num LI, o catalisador foi reciclado com sucesso. A presença de água e o meio oxidante influenciaram a formação destas espécies. Os complexos [CpMo(CO)3Me] (Cap.5) e [CpMo(CO)2(η3- C3H5)] (Cap.6) originaram espécies activas similares (baseado nos testes catalíticos e nos espectros FT-IR ATR dos sólidos recuperados). Para [Cp'Mo(CO)2(η3-C3H5)], a influência do Cp' na actividade catalítica sugeriu a formação de espécies activas com este ligando. A partir dos complexos [Mo(CO)4L] formaram-se in situ catalisadores estáveis, que podem ser heterogéneos: para L=2-[3(5)-pirazolil]piridina formou-se [Mo4O12L4]; para L=[3- (2-piridil)-1-pirazolil]acetato de etilo formou-se [Mo8O24L4] (Cap.7). O uso de microondas (MO) como método de aquecimento em vez de um banho de óleo (BO) resultou no aumento da velocidade da reacção catalítica, devido ao aquecimento mais rápido da mistura reaccional (Caps. 5 e 7). A utilização da solução aquosa de tBHP em vez de tBHPdec era preferível, porque excluía o decano do sistema reaccional e mantinham-se elevados os rendimentos em epóxido (Caps. 2 e 6); optimizou-se o desempenho catalítico removendo a água das misturas reaccionais (Caps. 4 e 7). O melhor resultado para a epoxidação de limoneno foi observado para [CpMoCO3Me]: 88% de rendimento em epóxido (2 h, 55 ºC, método de aquecimento MO).