3 resultados para RF sputtering deposition
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Neste trabalho foram estudados diferentes filmes finos de ZnO depositados por Rf-Sputtering. Filmes finos de ZnO com diferentes propriedades óticas foram obtidos intencionalmente variando os parâmetros de deposição. De modo a correlacionar as propriedades óticas e estruturais com os parâmetros de deposição, foram utilizadas diferentes técnicas de caracterização avançadas, tais como, fotoluminescência, microscopia de força atómica, difração de raios- X e retrodispersão de Rutherford. Este trabalho centra-se na discussão e análise das bandas de emissão vermelha, verde e azul, comumente observadas em amostras de ZnO e cuja natureza tem sido objeto de grande controvérsia na literatura. A utilização de técnicas de caracterização estrutural revelou-se de extrema importância para correlacionar as propriedades físicas de composição e estrutura com os centros óticos observados nos filmes. Nesta base, foram propostos e discutidos diferentes modelos de recombinação ótica associados à qualidade estrutural dos filmes, considerando modelos de camadas que descrevem a heterogeneidade lateral e em profundidade. Desta análise verificou-se a presença de heterogeneidade estrutural e composicional, que aumenta a complexidade na compreensão da correlação dos parâmetros de deposição com as propriedades óticas dos filmes. Foi discutida a limitação e validade de diferentes modelos tendo em conta a presença da heterogeneidade existente nos filmes estudados. Este trabalho contribui assim para uma melhor compreensão da complexidade de interação dos diferentes defeitos e o seu efeito nas propriedades óticas, nomeadamente o papel dos defeitos de interface, na superfície, nas fronteiras de grão e junto ao substrato.
Resumo:
The present PhD work aims the research and development of materials that exhibit multiferroic properties, in particular having a significant interaction between ferromagnetism and ferroelectricity; either directly within an intrinsic single phase or by combining extrinsic materials, achieving the coupling of properties through mechanic phenomena of the respective magnetostriction and piezoelectricity. These hybrid properties will allow the cross modification of magnetic and electric polarization states by the application of cross external magnetic and/or electric fields, giving way to a vast area for scientific investigation and potential technological applications in a new generation of electronic devices, such as computer memories, signal processing, transducers, sensors, etc. Initial experimental work consisted in chemical synthesis of nano powders oxides by urea pyrolysis method: A series of ceramic bulk composites with potential multiferroic properties comprised: of LuMnO3 with La0.7Sr0.3MnO3 and BaTiO3 with La0.7Ba0.3MnO3; and a series based on the intrinsic multiferroic LuMn1-zO3 phase modified with of Manganese vacancies. The acquisition of a new magnetron RF sputtering deposition system, in the Physics Department of Aveiro University, contributed to the proposal of an analogous experimental study in multiferroic thin films and multilayer samples. Besides the operational debut of this equipment several technical upgrades were completed like: the design and construction of the heater electrical contacts; specific shutters and supports for the magnetrons and for the substrate holder and; the addition of mass flow controllers, which allowed the introduction of N2 or O2 active atmosphere in the chamber; and the addition of a second RF generator, enabling co-deposition of different targets. Base study of the deposition conditions and resulting thin films characteristics in different substrates was made from an extensive list of targets. Particular attention was given to thin film deposition of magnetic phases La1-xSrxMnO3, La1-xBaxMnO3 and Ni2+x-yMn1-xGa1+y alloy, from the respective targets: La0.7Sr0.3MnO3, La0.7Ba0.3MnO3; and NiGa with NiMn. Main structural characterization of samples was performed by conventional and high resolution X-Ray Diffraction (XRD); chemical composition was determined by Electron Dispersion Spectroscopy (EDS); magnetization measurements recur to a Vibrating Sample Magnetometer (VSM) prototype; and surface probing (SPM) using Magnetic-Force (MFM) and Piezo-Response (PFM) Microscopy. Results clearly show that the composite bulk samples (LuM+LSM and BTO+LBM) feat the intended quality objectives in terms of phase composition and purity, having spurious contents below 0.5 %. SEM images confirm compact grain packaging and size distribution around the 50 nm scale. Electric conductivity, magnetization intensity and magneto impedance spreading response are coherent with the relative amount of magnetic phase in the sample. The existence of coupling between the functional phases is confirmed by the Magnetoelectric effect measurements of the sample “78%LuM+22%LSM” reaching 300% of electric response for 1 T at 100 kHz; while in the “78%BTO+22%LBM” sample the structural transitions of the magnetic phase at ~350 K result in a inversion of ME coefficient the behavior. A functional Magneto-Resistance measurement system was assembled from the concept stage until the, development and operational status; it enabled to test samples from 77 to 350 K, under an applied magnetic field up to 1 Tesla with 360º horizontal rotation; this system was also designed to measure Hall effect and has the potential to be further upgraded. Under collaboration protocols established with national and international institutions, complementary courses and sample characterization studies were performed using Magneto-Resistance (MR), Magneto-Impedance (MZ) and Magneto-Electric (ME) measurements; Raman and X-ray Photoelectron Spectroscopy (XPS); SQUID and VSM magnetization; Scanning Electron Microscopy (SEM) and Rutherford Back Scattering (RBS); Scan Probe Microscopy (SPM) with Band Excitation Probe Spectroscopy (BEPS); Neutron Powder Diffraction (NPD) and Perturbed Angular Correlations (PAC). Additional collaboration in research projects outside the scope of multiferroic materials provided further experience in sample preparation and characterization techniques, namely VSM and XPS measurements were performed in cubane molecular complex compounds and enable to identify the oxidation state of the integrating cluster of Ru ions; also, XRD and EDS/SEM analysis of the acquired targets and substrates implied the devolution of some items not in conformity with the specifications. Direct cooperation with parallel research projects regarding multiferroic materials, enable the assess to supplementary samples, namely a preliminary series of nanopowder Y1-x-yCaxØyMn1O3 and of Eu0.8Y0.2MnO3, a series of micropowder composites of LuMnO3 with La0.625Sr0.375MnO3 and of BaTiO3 with hexagonal ferrites; mono and polycrystalline samples of Pr1-xCaxMnO3, La1-xSrxMnO3 and La1-xCaxMnO3.
Resumo:
This work is about the combination of functional ferroelectric oxides with Multiwall Carbon Nanotubes for microelectronic applications, as for example potential 3 Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Miniaturized electronics are ubiquitous now. The drive to downsize electronics has been spurred by needs of more performance into smaller packages at lower costs. But the trend of electronics miniaturization challenges board assembly materials, processes, and reliability. Semiconductor device and integrated circuit technology, coupled with its associated electronic packaging, forms the backbone of high-performance miniaturized electronic systems. However, as size decreases and functionalization increases in the modern electronics further size reduction is getting difficult; below a size limit the signal reliability and device performance deteriorate. Hence miniaturization of siliconbased electronics has limitations. On this background the Road Map for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, designated as More than Moore; being one of them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. CNTs with their unique performance and three dimensionality at the nano-scale have been regarded as promising elements for miniaturized electronics [2]. CNTs are tubular in geometry and possess a unique set of properties, including ballistic electron transportation and a huge current caring capacity, which make them of great interest for future microelectronics [2]. Indeed CNTs might have a key role in the miniaturization of Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Moving from a traditional two dimensional (2D) design (as is the case of thin films) to a 3D structure (based on a tridimensional arrangement of unidimensional structures) will result in the high reliability and sensing of the signals due to the large contribution from the bottom electrode. One way to achieve this 3D design is by using CNTs. Ferroelectrics (FE) are spontaneously polarized and can have high dielectric constants and interesting pyroelectric, piezoelectric, and electrooptic properties, being a key application of FE electronic memories. However, combining CNTs with FE functional oxides is challenging. It starts with materials compatibility, since crystallization temperature of FE and oxidation temperature of CNTs may overlap. In this case low temperature processing of FE is fundamental. Within this context in this work a systematic study on the fabrication of CNTs - FE structures using low cost low temperature methods was carried out. The FE under study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate (BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in presence of MWCNTs and interfaces between the CNTs/FE are addressed in this work. The ferroelectric response locally measured by Piezoresponse Force Microscopy (PFM) clearly evidenced that even at low processing temperatures FE on CNTs retain its ferroelectric nature. The work started by verifying the thermal decomposition behavior under different conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non isothermal conditions, but morphology changes were observed for isothermal conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy (TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 ºC with a minimum sublimation. The activation energy for the decomposition of MWCNTs in air was calculated to lie between 80 and 108 kJ/mol. These results are relevant for the fabrication of MWCNTs – FE structures. Indeed we demonstrate that PZT can be deposited by sol gel at low temperatures on MWCNTs. And particularly interesting we prove that MWCNTs decrease the temperature and time for formation of PZT by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised at 500 ºC for 1 h was proved by PFM. In the continuation of this work we developed a low cost methodology of coating MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as a proof of concept was BT. BT is a well-known lead free perovskite used in many microelectronic applications. However, synthesis by solid state reaction is typically performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT structures are ferroelectric and exhibit an electromechanical response (15 pm/V). These results have broad implications since this strategy can also be extended to other compounds of materials with high crystallization temperatures. In addition the coverage of MWCNTs with FE can be optimized, in this case with non covalent functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). MWCNTs were used as templates to grow, in this case single phase multiferroic BFO nanorods. This work shows that the use of nitric solvent results in severe damages of the MWCNTs layers that results in the early oxidation of the tubes during the annealing treatment. It was also observed that the use of nitric solvent results in the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) of the nitric solution. The opening of the caps and filling of the tubes occurs simultaneously during the refluxing step. Furthermore we verified that MWCNTs have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs during the annealing process causes an oxygen deficient atmosphere that restrains the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of the obtained BFO nano structures indicates that MWCNTs act as template to grow 1D structure of BFO. Magnetic measurements on these BFO nanostructures revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 K. We also exploited the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by PFM. A week ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe. Our systematic work is a significant step forward in the development of 3D memory cells; it clearly demonstrates that CNTs can be combined with FE oxides and can be used, for example, as the next 3D generation of FERAMs, not excluding however other different applications in microelectronics.