1 resultado para Packing-houses
em Repositório Institucional da Universidade de Aveiro - Portugal
Filtro por publicador
- Repository Napier (4)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (14)
- Aston University Research Archive (6)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca Digital da Câmara dos Deputados (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (9)
- Bibloteca do Senado Federal do Brasil (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Brock University, Canada (9)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (13)
- CentAUR: Central Archive University of Reading - UK (13)
- Center for Jewish History Digital Collections (13)
- Chapman University Digital Commons - CA - USA (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (24)
- Cochin University of Science & Technology (CUSAT), India (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Cornell: DigitalCommons@ILR (1)
- Dalarna University College Electronic Archive (11)
- Department of Computer Science E-Repository - King's College London, Strand, London (5)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (35)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Harvard University (3)
- Helda - Digital Repository of University of Helsinki (31)
- Indian Institute of Science - Bangalore - Índia (244)
- Instituto Politécnico do Porto, Portugal (1)
- National Center for Biotechnology Information - NCBI (9)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (24)
- Queensland University of Technology - ePrints Archive (144)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositorio Academico Digital UANL (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (7)
- Research Open Access Repository of the University of East London. (1)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (23)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Université de Montréal, Canada (1)
- University of Connecticut - USA (1)
- University of Michigan (208)
- University of Queensland eSpace - Australia (12)
- USA Library of Congress (2)
Relevância:
Resumo:
A cross in Rn is a cluster of unit cubes comprising a central one and 2n arms. In their monograph Algebra and Tiling, Stein and Szabó suggested that tilings of ℝn by crosses should be studied. The question of the existence of such a tiling has been answered by various authors for many special cases. In this paper we completely solve the problem for ℝ2. In fact we do not only characterize crosses for which there exists a tiling of ℝ2 but for each cross we determine its maximum packing density.