2 resultados para PHOTOEMISSION SPECTRA
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Taking a Fiedler’s result on the spectrum of a matrix formed from two symmetric matrices as a motivation, a more general result is deduced and applied to the determination of adjacency and Laplacian spectra of graphs obtained by a generalized join graph operation on families of graphs (regular in the case of adjacency spectra and arbitrary in the case of Laplacian spectra). Some additional consequences are explored, namely regarding the largest eigenvalue and algebraic connectivity.
Resumo:
Let p(G)p(G) and q(G)q(G) be the number of pendant vertices and quasi-pendant vertices of a simple undirected graph G, respectively. Let m_L±(G)(1) be the multiplicity of 1 as eigenvalue of a matrix which can be either the Laplacian or the signless Laplacian of a graph G. A result due to I. Faria states that mL±(G)(1) is bounded below by p(G)−q(G). Let r(G) be the number of internal vertices of G. If r(G)=q(G), following a unified approach we prove that mL±(G)(1)=p(G)−q(G). If r(G)>q(G) then we determine the equality mL±(G)(1)=p(G)−q(G)+mN±(1), where mN±(1) denotes the multiplicity of 1 as eigenvalue of a matrix N±. This matrix is obtained from either the Laplacian or signless Laplacian matrix of the subgraph induced by the internal vertices which are non-quasi-pendant vertices. Furthermore, conditions for 1 to be an eigenvalue of a principal submatrix are deduced and applied to some families of graphs.