3 resultados para Péptidos antimicrobiales

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human brain stores, integrates, and transmits information recurring to millions of neurons, interconnected by countless synapses. Though neurons communicate through chemical signaling, information is coded and conducted in the form of electrical signals. Neuroelectrophysiology focus on the study of this type of signaling. Both intra and extracellular approaches are used in research, but none holds as much potential in high-throughput screening and drug discovery, as extracellular recordings using multielectrode arrays (MEAs). MEAs measure neuronal activity, both in vitro and in vivo. Their key advantage is the capability to record electrical activity at multiple sites simultaneously. Alzheimer’s disease (AD) is the most common neurodegenerative disease and one of the leading causes of death worldwide. It is characterized by neurofibrillar tangles and aggregates of amyloid-β (Aβ) peptides, which lead to the loss of synapses and ultimately neuronal death. Currently, there is no cure and the drugs available can only delay its progression. In vitro MEA assays enable rapid screening of neuroprotective and neuroharming compounds. Therefore, MEA recordings are of great use in both AD basic and clinical research. The main aim of this thesis was to optimize the formation of SH-SY5Y neuronal networks on MEAs. These can be extremely useful for facilities that do not have access to primary neuronal cultures, but can also save resources and facilitate obtaining faster high-throughput results to those that do. Adhesion-mediating compounds proved to impact cell morphology, viability and exhibition of spontaneous electrical activity. Moreover, SH-SY5Y cells were successfully differentiated and demonstrated acute effects on neuronal function after Aβ addition. This effect on electrical signaling was dependent on Aβ oligomers concentration. The results here presented allow us to conclude that the SH-SY5Y cell line can be successfully differentiated in properly coated MEAs and be used for assessing acute Aβ effects on neuronal signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The last decades of the 20th century defined the genetic engineering advent, climaxing in the development of techniques, such as PCR and Sanger sequencing. This, permitted the appearance of new techniques to sequencing whole genomes, identified as next-generation sequencing. One of the many applications of these techniques is the in silico search for new secondary metabolites, synthesized by microorganisms exhibiting antimicrobial properties. The peptide antibiotics compounds can be classified in two classes, according to their biosynthesis, in ribosomal or nonribosomal peptides. Lanthipeptides are the most studied ribosomal peptides and are characterized by the presence of lanthionine and methylanthionine that result from posttranslational modifications. Lanthipeptides are divided in four classes, depending on their biosynthetic machinery. In class I, a LanB enzyme dehydrate serine and threonine residues in the C-terminus precursor peptide. Then, these residues undergo a cyclization step performed by a LanC enzyme, forming the lanthionine rings. The cleavage and the transport of the peptide is achieved by the LanP and LanT enzymes, respectively. Although, in class II only one enzyme, LanM, is responsible for the dehydration and cyclization steps and also only one enzyme performs the cleavage and transport, LanT. Pedobacter sp. NL19 is a Gram-negative bacterium, isolated from sludge of an abandon uranium mine, in Viseu (Portugal). Antibacterial activity in vitro was detected against several Gram-positive and Gram-negative bacteria. Sequencing and in silico analysis of NL19 genome revealed the presence of 21 biosynthetic clusters for secondary metabolites, including nonribosomal and ribosomal peptides biosynthetic clusters. Four lanthipeptides clusters were predicted, comprising the precursor peptides, the modifying enzymes (LanB and LanC), and also a bifunctional LanT. This result revealed the hybrid nature of the clusters, comprising characteristics from two distinct classes, which are poorly described in literature. The phylogenetic analysis of their enzymes showed that they clustered within the bacteroidetes clade. Furthermore, hybrid gene clusters were also found in other species of this phylum, revealing that it is a common characteristic in this group. Finally, the analysis of NL19 colonies by MALDI-TOF MS allowed the identification of a 3180 Da mass that corresponds to the predicted mass of a lanthipeptide encoded in one of the clusters. However, this result is not fully conclusive and further experiments are needed to understand the full potential of the compounds encoded in this type of clusters. In conclusion, it was determined that NL19 strain has the potential to produce diverse secondary metabolites, including lanthipeptides that were not functionally characterized so far.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific domains can determine protein structural functional relationships. For the Alzheimer’s Amyloid Precursor Protein (APP) several domains have been described, both in its intracellular and extracellular fragments. Many functions have been attributed to APP including an important role in cell adhesion and cell to cell recognition. This places APP at key biological responses, including synaptic transmission. To fulfil these functions, extracellular domains take on added significance. The APP extracellular domain RERMS is in fact a likely candidate to be involved in the aforementioned physiological processes. A multidisciplinary approach was employed to address the role of RERMS. The peptide RERMS was crosslinked to PEG (Polyethylene glycol) and the reaction validated by FTIR (Fourier transform infrared spectrometry). FTIR proved to be the most efficient at validating this reaction because it requires only a drop of sample, and it gives information about the reactions occurred in a mixture. The data obtained consist in an infrared spectra of the sample, where peaks positions give information about the structure of the molecules, and the intensity of peaks is related to the concentration of the molecules. Subsequently substrates of PEG impregnated with RERMS were prepared and SH-SY5Y (human neuroblastoma cell line) cells were plated and differentiated on the latter. Several morphological alterations were clearly evident. The RERMS peptide provoked cells to take on a flatter appearance and the cytoskeletal architecture changed, with the appearance of stress fibres, a clear indicator of actin reorganization. Given that focal adhesions play a key role in determining cellular structure the latter were directly investigated. Focal adhesion kinase (FAK) is one of the most highly expressed proteins in the CNS (central nervous system) during development. It has been described to be crucial for radial migration of neurons. FAK can be localized in growth cones and mediated the response to attractive and repulsive cues during migration. One of the mechanisms by which FAK becomes active is by auto phosphorylation at tyrosine 397. It became clearly evident that in the presence of the RERMS peptide pFAK staining at focal adhesions intensified and more focal adhesions became apparent. Furthermore speckled structures in the nucleus, putatively corresponding to increased expression activity, also increased with RERMS. Taken together these results indicate that the RERMS domain in APP plays a critical role in determining cellular physiological responses. Here is suggested a model by which RERMS domain is recognized by integrins and mediate intracellular responses involving FAK, talin, actin filaments and vinculin. This mechanism probably is responsible for mediating cell adhesion and neurite outgrowth on neurons.