4 resultados para Orthogonal polynomials of a discrete variable
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Doutoramento em Matemática
Resumo:
In the recent past one of the main concern of research in the field of Hypercomplex Function Theory in Clifford Algebras was the development of a variety of new tools for a deeper understanding about its true elementary roots in the Function Theory of one Complex Variable. Therefore the study of the space of monogenic (Clifford holomorphic) functions by its stratification via homogeneous monogenic polynomials is a useful tool. In this paper we consider the structure of those polynomials of four real variables with binomial expansion. This allows a complete characterization of sequences of 4D generalized monogenic Appell polynomials by three different types of polynomials. A particularly important case is that of monogenic polynomials which are simply isomorphic to the integer powers of one complex variable and therefore also called pseudo-complex powers.
Resumo:
This thesis studies properties and applications of different generalized Appell polynomials in the framework of Clifford analysis. As an example of 3D-quasi-conformal mappings realized by generalized Appell polynomials, an analogue of the complex Joukowski transformation of order two is introduced. The consideration of a Pascal n-simplex with hypercomplex entries allows stressing the combinatorial relevance of hypercomplex Appell polynomials. The concept of totally regular variables and its relation to generalized Appell polynomials leads to the construction of new bases for the space of homogeneous holomorphic polynomials whose elements are all isomorphic to the integer powers of the complex variable. For this reason, such polynomials are called pseudo-complex powers (PCP). Different variants of them are subject of a detailed investigation. Special attention is paid to the numerical aspects of PCP. An efficient algorithm based on complex arithmetic is proposed for their implementation. In this context a brief survey on numerical methods for inverting Vandermonde matrices is presented and a modified algorithm is proposed which illustrates advantages of a special type of PCP. Finally, combinatorial applications of generalized Appell polynomials are emphasized. The explicit expression of the coefficients of a particular type of Appell polynomials and their relation to a Pascal simplex with hypercomplex entries are derived. The comparison of two types of 3D Appell polynomials leads to the detection of new trigonometric summation formulas and combinatorial identities of Riordan-Sofo type characterized by their expression in terms of central binomial coefficients.
Resumo:
Tal como o título indica, esta tese estuda problemas de cobertura com alcance limitado. Dado um conjunto de antenas (ou qualquer outro dispositivo sem fios capaz de receber ou transmitir sinais), o objectivo deste trabalho é calcular o alcance mínimo das antenas de modo a que estas cubram completamente um caminho entre dois pontos numa região. Um caminho que apresente estas características é um itinerário seguro. A definição de cobertura é variável e depende da aplicação a que se destina. No caso de situações críticas como o controlo de fogos ou cenários militares, a definição de cobertura recorre à utilização de mais do que uma antena para aumentar a eficácia deste tipo de vigilância. No entanto, o alcance das antenas deverá ser minimizado de modo a manter a vigilância activa o maior tempo possível. Consequentemente, esta tese está centrada na resolução deste problema de optimização e na obtenção de uma solução particular para cada caso. Embora este problema de optimização tenha sido investigado como um problema de cobertura, é possível estabelecer um paralelismo entre problemas de cobertura e problemas de iluminação e vigilância, que são habitualmente designados como problemas da Galeria de Arte. Para converter um problema de cobertura num de iluminação basta considerar um conjunto de luzes em vez de um conjunto de antenas e submetê-lo a restrições idênticas. O principal tema do conjunto de problemas da Galeria de Arte abordado nesta tese é a 1-boa iluminação. Diz-se que um objecto está 1-bem iluminado por um conjunto de luzes se o invólucro convexo destas contém o objecto, tornando assim este conceito num tipo de iluminação de qualidade. O objectivo desta parte do trabalho é então minimizar o alcance das luzes de modo a manter uma iluminação de qualidade. São também apresentadas duas variantes da 1-boa iluminação: a iluminação ortogonal e a boa !-iluminação. Esta última tem aplicações em problemas de profundidade e visualização de dados, temas que são frequentemente abordados em estatística. A resolução destes problemas usando o diagrama de Voronoi Envolvente (uma variante do diagrama de Voronoi adaptada a problemas de boa iluminação) é também proposta nesta tese.