3 resultados para Network architecture

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os mecanismos e técnicas do domínio de Tempo-Real são utilizados quando existe a necessidade de um sistema, seja este um sistema embutido ou de grandes dimensões, possuir determinadas características que assegurem a qualidade de serviço do sistema. Os Sistemas de Tempo-Real definem-se assim como sistemas que possuem restrições temporais rigorosas, que necessitam de apresentar altos níveis de fiabilidade de forma a garantir em todas as instâncias o funcionamento atempado do sistema. Devido à crescente complexidade dos sistemas embutidos, empregam-se frequentemente arquiteturas distribuídas, onde cada módulo é normalmente responsável por uma única função. Nestes casos existe a necessidade de haver um meio de comunicação entre estes, de forma a poderem comunicar entre si e cumprir a funcionalidade desejadas. Devido à sua elevada capacidade e baixo custo a tecnologia Ethernet tem vindo a ser alvo de estudo, com o objetivo de a tornar num meio de comunicação com a qualidade de serviço característica dos sistemas de tempo-real. Como resposta a esta necessidade surgiu na Universidade de Aveiro, o Switch HaRTES, o qual possui a capacidade de gerir os seus recursos dinamicamente, de modo a fornecer à rede onde é aplicado garantias de Tempo-Real. No entanto, para uma arquitetura de rede ser capaz de fornecer aos seus nós garantias de qualidade serviço, é necessário que exista uma especificação do fluxo, um correto encaminhamento de tráfego, reserva de recursos, controlo de admissão e um escalonamento de pacotes. Infelizmente, o Switch HaRTES apesar de possuir todas estas características, não suporta protocolos standards. Neste documento é apresentado então o trabalho que foi desenvolvido para a integração do protocolo SRP no Switch HaRTES.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The explosion in mobile data traffic is a driver for future network operator technologies, given its large potential to affect both network performance and generated revenue. The concept of distributed mobility management (DMM) has emerged in order to overcome efficiency-wise limitations in centralized mobility approaches, proposing not only the distribution of anchoring functions but also dynamic mobility activation sensitive to the applications needs. Nevertheless, there is not an acceptable solution for IP multicast in DMM environments, as the first proposals based on MLD Proxy are prone to tunnel replication problem or service disruption. We propose the application of PIM-SM in mobility entities as an alternative solution for multicast support in DMM, and introduce an architecture enabling mobile multicast listeners support over distributed anchoring frameworks in a network-efficient way. The architecture aims at providing operators with flexible options to provide multicast mobility, supporting three modes: the first one introduces basic IP multicast support in DMM; the second improves subscription time through extensions to the mobility protocol, obliterating the dependence on MLD protocol; and the third enables fast listener mobility by avoiding potentially slow multicast tree convergence latency in larger infrastructures, by benefiting from mobility tunnels. The different modes were evaluated by mathematical analysis regarding disruption time and packet loss during handoff against several parameters, total and tunneling packet delivery cost, and regarding packet and signaling overhead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The digital revolution of the 21st century contributed to stem the Internet of Things (IoT). Trillions of embedded devices using the Internet Protocol (IP), also called smart objects, will be an integral part of the Internet. In order to support such an extremely large address space, a new Internet Protocol, called Internet Protocol Version 6 (IPv6) is being adopted. The IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) has accelerated the integration of WSNs into the Internet. At the same time, the Constrained Application Protocol (CoAP) has made it possible to provide resource constrained devices with RESTful Web services functionalities. This work builds upon previous experience in street lighting networks, for which a proprietary protocol, devised by the Lighting Living Lab, was implemented and used for several years. The proprietary protocol runs on a broad range of lighting control boards. In order to support heterogeneous applications with more demanding communication requirements and to improve the application development process, it was decided to port the Contiki OS to the four channel LED driver (4LD) board from Globaltronic. This thesis describes the work done to adapt the Contiki OS to support the Microchip TM PIC24FJ128GA308 microprocessor and presents an IP based solution to integrate sensors and actuators in smart lighting applications. Besides detailing the system’s architecture and implementation, this thesis presents multiple results showing that the performance of CoAP based resource retrievals in constrained nodes is adequate for supporting networking services in street lighting networks.