2 resultados para Multiple air vehicles

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selection of the energy source to power the transport sector is one of the main current concerns, not only relative with the energy paradigm but also due to the strong influence of road traffic in urban areas, which highly affects human exposure to air pollutants and human health and quality of life. Due to current important technical limitations of advanced energy sources for transportation purposes, biofuels are seen as an alternative way to power the world’s motor vehicles in a near-future, helping to reduce GHG emissions while at the same time stimulating rural development. Motivated by European strategies, Portugal, has been betting on biofuels to meet the Directive 2009/28/CE goals for road transports using biofuels, especially biodiesel, even though, there is unawareness regarding its impacts on air quality. In this sense, this work intends to clarify this issue by trying to answer the following question: can biodiesel use contribute to a better air quality over Portugal, particularly over urban areas? The first step of this work consisted on the characterization of the national biodiesel supply chain, which allows verifying that the biodiesel chain has problems of sustainability as it depends on raw materials importation, therefore not contributing to reduce the external energy dependence. Next, atmospheric pollutant emissions and air quality impacts associated to the biodiesel use on road transports were assessed, over Portugal and in particular over the Porto urban area, making use of the WRF-EURAD mesoscale numerical modelling system. For that, two emission scenarios were defined: a reference situation without biodiesel use and a scenario reflecting the use of a B20 fuel. Through the comparison of both scenarios, it was verified that the use of B20 fuels helps in controlling air pollution, promoting reductions on PM10, PM2.5, CO and total NMVOC concentrations. It was also verified that NO2 concentrations decrease over the mainland Portugal, but increase in the Porto urban area, as well as formaldehyde, acetaldehyde and acrolein emissions in the both case studies. However, the use of pure diesel is more injurious for human health due to its dominant VOC which have higher chronic hazard quotients and hazard indices when compared to B20.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays there is a huge evolution in the technological world and in the wireless networks. The electronic devices have more capabilities and resources over the years, which makes the users more and more demanding. The necessity of being connected to the global world leads to the arising of wireless access points in the cities to provide internet access to the people in order to keep the constant interaction with the world. Vehicular networks arise to support safety related applications and to improve the traffic flow in the roads; however, nowadays they are also used to provide entertainment to the users present in the vehicles. The best way to increase the utilization of the vehicular networks is to give to the users what they want: a constant connection to the internet. Despite of all the advances in the vehicular networks, there were several issues to be solved. The presence of dedicated infrastructure to vehicular networks is not wide yet, which leads to the need of using the available Wi-Fi hotspots and the cellular networks as access networks. In order to make all the management of the mobility process and to keep the user’s connection and session active, a mobility protocol is needed. Taking into account the huge number of access points present at the range of a vehicle for example in a city, it will be beneficial to take advantage of all available resources in order to improve all the vehicular network, either to the users and to the operators. The concept of multihoming allows to take advantage of all available resources with multiple simultaneous connections. This dissertation has as objectives the integration of a mobility protocol, the Network-Proxy Mobile IPv6 protocol, with a host-multihoming per packet solution in order to increase the performance of the network by using more resources simultaneously, the support of multi-hop communications, either in IPv6 or IPv4, the capability of providing internet access to the users of the network, and the integration of the developed protocol in the vehicular environment, with the WAVE, Wi-Fi and cellular technologies. The performed tests focused on the multihoming features implemented on this dissertation, and on the IPv4 network access for the normal users. The obtained results show that the multihoming addition to the mobility protocol improves the network performance and provides a better resource management. Also, the results show the correct operation of the developed protocol in a vehicular environment.