3 resultados para Modulated logics
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
This work advances a research agenda which has as its main aim the application of Abstract Algebraic Logic (AAL) methods and tools to the specification and verification of software systems. It uses a generalization of the notion of an abstract deductive system to handle multi-sorted deductive systems which differentiate visible and hidden sorts. Two main results of the paper are obtained by generalizing properties of the Leibniz congruence — the central notion in AAL. In this paper we discuss a question we posed in [1] about the relationship between the behavioral equivalences of equivalent hidden logics. We also present a necessary and sufficient intrinsic condition for two hidden logics to be equivalent.
Resumo:
Hybridisation is a systematic process along which the characteristic features of hybrid logic, both at the syntactic and the semantic levels, are developed on top of an arbitrary logic framed as an institution. In a series of papers this process has been detailed and taken as a basis for a speci cation methodology for recon gurable systems. The present paper extends this work by showing how a proof calculus (in both a Hilbert and a tableau based format) for the hybridised version of a logic can be systematically generated from a proof calculus for the latter. Such developments provide the basis for a complete proof theory for hybrid(ised) logics, and thus pave the way to the development of (dedicated) proof support.
Resumo:
Hybridisation is a systematic process along which the characteristic features of hybrid logic, both at the syntactic and the semantic levels, are developed on top of an arbitrary logic framed as an institution. It also captures the construction of first-order encodings of such hybridised institutions into theories in first-order logic. The method was originally developed to build suitable logics for the specification of reconfigurable software systems on top of whatever logic is used to describe local requirements of each system’s configuration. Hybridisation has, however, a broader scope, providing a fresh example of yet another development in combining and reusing logics driven by a problem from Computer Science. This paper offers an overview of this method, proposes some new extensions, namely the introduction of full quantification leading to the specification of dynamic modalities, and exemplifies its potential through a didactical application. It is discussed how hybridisation can be successfully used in a formal specification course in which students progress from equational to hybrid specifications in a uniform setting, integrating paradigms, combining data and behaviour, and dealing appropriately with systems evolution and reconfiguration.