4 resultados para Mesh networks

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the modern society, new devices, applications and technologies, with sophisticated capabilities, are converging in the same network infrastructure. Users are also increasingly demanding in personal preferences and expectations, desiring Internet connectivity anytime and everywhere. These aspects have triggered many research efforts, since the current Internet is reaching a breaking point trying to provide enough flexibility for users and profits for operators, while dealing with the complex requirements raised by the recent evolution. Fully aligned with the future Internet research, many solutions have been proposed to enhance the current Internet-based architectures and protocols, in order to become context-aware, that is, to be dynamically adapted to the change of the information characterizing any network entity. In this sense, the presented Thesis proposes a new architecture that allows to create several networks with different characteristics according to their context, on the top of a single Wireless Mesh Network (WMN), which infrastructure and protocols are very flexible and self-adaptable. More specifically, this Thesis models the context of users, which can span from their security, cost and mobility preferences, devices’ capabilities or services’ quality requirements, in order to turn a WMN into a set of logical networks. Each logical network is configured to meet a set of user context needs (for instance, support of high mobility and low security). To implement this user-centric architecture, this Thesis uses the network virtualization, which has often been advocated as a mean to deploy independent network architectures and services towards the future Internet, while allowing a dynamic resource management. This way, network virtualization can allow a flexible and programmable configuration of a WMN, in order to be shared by multiple logical networks (or virtual networks - VNs). Moreover, the high level of isolation introduced by network virtualization can be used to differentiate the protocols and mechanisms of each context-aware VN. This architecture raises several challenges to control and manage the VNs on-demand, in response to user and WMN dynamics. In this context, we target the mechanisms to: (i) discover and select the VN to assign to an user; (ii) create, adapt and remove the VN topologies and routes. We also explore how the rate of variation of the user context requirements can be considered to improve the performance and reduce the complexity of the VN control and management. Finally, due to the scalability limitations of centralized control solutions, we propose a mechanism to distribute the control functionalities along the architectural entities, which can cooperate to control and manage the VNs in a distributed way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho apresenta um estudo sobre o dimensionamento de redes ópticas, com vistas a obter um modelo de dimensionamento para redes de transporte sobreviventes. No estudo utilizou-se uma abordagem estatística em detrimento à determinística. Inicialmente, apresentam-se as principais tecnologias e diferentes arquitecturas utilizadas nas redes ópticas de transporte. Bem como os principais esquemas de sobrevivência e modos de transporte. São identificadas variáveis necessárias e apresenta-se um modelo dimensionamento para redes de transporte, tendo-se dado ênfase às redes com topologia em malha e considerando os modos de transporte opaco, transparente e translúcido. É feita uma análise rigorosa das características das topologias de redes de transporte reais, e desenvolve-se um gerador de topologias de redes de transporte, para testar a validade dos modelos desenvolvidos. Também é implementado um algoritmo genético para a obtenção de uma topologia optimizada para um dado tráfego. São propostas expressões para o cálculo de variáveis não determinísticas, nomeadamente, para o número médio de saltos de um pedido, coeficiente de protecção e coeficiente de restauro. Para as duas últimas, também é analisado o impacto do modelo de tráfego. Verifica-se que os resultados obtidos pelas expressões propostas são similares às obtidas por cálculo numérico, e que o modelo de tráfego não influencia significativamente os valores obtidos para os coeficientes. Finalmente, é demonstrado que o modelo proposto é útil para o dimensionamento e cálculo dos custos de capital de redes com informação incompleta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congestion control in wireless networks is an important and open issue. Previous research has proven the poor performance of the Transport Control Protocol (TCP) in such networks. The factors that contribute to the poor performance of TCP in wireless environments concern its unsuitability to identify/detect and react properly to network events, its TCP window based ow control algorithm that is not suitable for the wireless channel, and the congestion collapse due to mobility. New rate based mechanisms have been proposed to mitigate TCP performance in wired and wireless networks. However, these mechanisms also present poor performance, as they lack of suitable bandwidth estimation techniques for multi-hop wireless networks. It is thus important to improve congestion control performance in wireless networks, incorporating components that are suitable for wireless environments. A congestion control scheme which provides an e - cient and fair sharing of the underlying network capacity and available bandwidth among multiple competing applications is crucial to the definition of new e cient and fair congestion control schemes on wireless multi-hop networks. The Thesis is divided in three parts. First, we present a performance evaluation study of several congestion control protocols against TCP, in wireless mesh and ad-hoc networks. The obtained results show that rate based congestion control protocols need an eficient and accurate underlying available bandwidth estimation technique. The second part of the Thesis presents a new link capacity and available bandwidth estimation mechanism denoted as rt-Winf (real time wireless inference). The estimation is performed in real-time and without the need to intrusively inject packets in the network. Simulation results show that rt-Winf obtains the available bandwidth and capacity estimation with accuracy and without introducing overhead trafic in the network. The third part of the Thesis proposes the development of new congestion control mechanisms to address the congestion control problems of wireless networks. These congestion control mechanisms use cross layer information, obtained by rt-Winf, to accurately and eficiently estimate the available bandwidth and the path capacity over a wireless network path. Evaluation of these new proposed mechanisms, through ns-2 simulations, shows that the cooperation between rt-Winf and the congestion control algorithms is able to significantly increase congestion control eficiency and network performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The digital revolution of the 21st century contributed to stem the Internet of Things (IoT). Trillions of embedded devices using the Internet Protocol (IP), also called smart objects, will be an integral part of the Internet. In order to support such an extremely large address space, a new Internet Protocol, called Internet Protocol Version 6 (IPv6) is being adopted. The IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) has accelerated the integration of WSNs into the Internet. At the same time, the Constrained Application Protocol (CoAP) has made it possible to provide resource constrained devices with RESTful Web services functionalities. This work builds upon previous experience in street lighting networks, for which a proprietary protocol, devised by the Lighting Living Lab, was implemented and used for several years. The proprietary protocol runs on a broad range of lighting control boards. In order to support heterogeneous applications with more demanding communication requirements and to improve the application development process, it was decided to port the Contiki OS to the four channel LED driver (4LD) board from Globaltronic. This thesis describes the work done to adapt the Contiki OS to support the Microchip TM PIC24FJ128GA308 microprocessor and presents an IP based solution to integrate sensors and actuators in smart lighting applications. Besides detailing the system’s architecture and implementation, this thesis presents multiple results showing that the performance of CoAP based resource retrievals in constrained nodes is adequate for supporting networking services in street lighting networks.