2 resultados para Membrane Potential
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Cannabinoids (CBs) can be classified as: phytocannabinoids, the constituents of the Cannabis sativa plant; synthetic cannabinoids lab-synthesized and the endocannabinoids that are endogenous lipid mediators. Cannabinoid compounds activate cannabinoid receptors – CB1 and CB2. The most prevalent psychoactive phytocannabinoid is Δ9tetrahydrocannabinol (THC), but more than 60 different CBs were already identified in the plant. The best characterized endocannabinoids (eCBs) are anandamide (AEA) and 2arachidonoylglycerol (2-AG), that are involved in several physiological processes including synaptic plasticity, pain modulation, energy homeostasis and reproduction. On the other hand, some synthetic cannabinoids that were initially designed for medical research, are now used as drugs of abuse. During the period of placental development, highly dynamic processes of remodeling occur, involving proliferation, apoptosis, differentiation and invasion of trophoblasts. It is known that a tight control of eCBs levels is required for normal pregnancy progression and that eCBs are involved in trophoblast cells turnover. Therefore, by sharing activation of the same receptors, exposure to exocannabinoids either by recreational or medicinal use may lead to alterations in the eCBs levels and in the endocannabinoid system homeostasis In this work, it was studied the impact of CBs in BeWo trophoblastic cells and in primary cultures of human cytotrophoblasts. Cells were treated for 24 hours with different concentrations of THC, the synthetic cannabinoid WIN‐55,212 (WIN) and 2-AG. Treatment with THC did not affect BeWo cells viability while WIN and 2-AG caused a dose-dependent viability loss. Morphological studies together with biochemical markers indicate that 2-AG is able to induce apoptosis in cytotrophoblasts. On the other hand, morphological studies after acridine orange staining suggest that autophagy may take part in WIN-induced loss of cell viability. All cannabinoids caused a decrease in mitochondrial membrane potential (Δψm) but only 2-AG led to ROS/RNS generation, though no changes in glutathione levels were observed. In addition, ER-stress may be involved in the 2-AG induced-oxidative stress, as preliminary results point to an increase in CCAAT-enhancer-binding protein homologous protein (CHOP) expression. Besides the decrease in cell viability, alterations in cell cycle progression were observed. WIN treatment induced a cell cycle arrest in G0/G1 phase, whereas 2-AG induced a cell cycle arrest in G2/M phase. Here it is reinforced the relevance of cannabinoid signaling in fundamental processes of cell proliferation and cell death in trophoblast cells. Since cannabis-based drugs are the most consumed illicit drugs worldwide and some of the most consumed recreational drugs by pregnant women, this study may contribute to the understanding of the impact of such substances in human reproduction.
Resumo:
Photodynamic inactivation (PDI) is defined as the process of cell destruction by oxidative stress resulting from the interaction between light and a photosensitizer (PS), in the presence of molecular oxygen. PDI of bacteria has been extensively studied in recent years, proving to be a promising alternative to conventional antimicrobial agents for the treatment of superficial and localized infections. Moreover, the applicability of PDI goes far beyond the clinical field, as its potential use in water disinfection, using PS immobilized on solid supports, is currently under study. The aim of the first part of this work was to study the oxidative modifications in phospholipids, nucleic acids and proteins of Escherichia coli and Staphylococcus warneri, subjected to photodynamic treatment with cationic porphyrins. The aims of the second part of the work were to study the efficiency of PDI in aquaculture water and the influence of different physicalchemical parameters in this process, using the Gram-negative bioluminescent bacterium Vibrio fischeri, and to evaluate the possibility of recycling cationic PS immobilized on magnetic nanoparticles. To study the oxidative changes in membrane phospholipids, a lipidomic approach has been used, combining chromatographic techniques and mass spectrometry. The FOX2 assay was used to determine the concentration of lipid hydroperoxides generated after treatment. The oxidative modifications in the proteins were analyzed by one-dimensional polyacrylamide gel electrophoresis (SDS-PAGE). Changes in the intracellular nucleic acids were analyzed by agarose gel electrophoresis and the concentration of doublestranded DNA was determined by fluorimetry. The oxidative changes of bacterial PDI at the molecular level were analyzed by infrared spectroscopy. In laboratory tests, bacteria (108 CFU mL-1) were irradiated with white light (4.0 mW cm-2) after incubation with the PS (Tri-Py+-Me-PF or Tetra-Py+-Me) at concentrations of 0.5 and 5.0 μM for S. warneri and E. coli, respectively. Bacteria were irradiated with different light doses (up to 9.6 J cm-2 for S. warneri and up to 64.8 J cm-2 for E. coli) and the changes were evaluated throughout the irradiation time. In the study of phospholipids, only the porphyrin Tri-Py+-Me-PF and a light dose of 64.8 J cm-2 were tested. The efficiency of PDI in aquaculture has been evaluated in two different conditions: in buffer solution, varying temperature, pH, salinity and oxygen concentration, and in aquaculture water samples, to reproduce the conditions of PDI in situ. The kinetics of the process was determined in realtime during the experiments by measuring the bioluminescence of V. fischeri (107 CFU mL-1, corresponding to a level of bioluminescence of 105 relative light units). A concentration of 5.0 μM of Tri-Py+-Me-PF was used in the experiments with buffer solution, and 10 to 50 μM in the experiments with aquaculture water. Artificial white light (4.0 mW cm-2) and solar irradiation (40 mW cm-2) were used as light sources.