5 resultados para Matemfiatica. Funfições Trigonomfietricas. Geogebra
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Creativity is recognized nowadays as a basic skill. However, the educational system fails in promoting their development. On the other hand, a growing acknowledgement of the importance of geometry emerges. Conceptual renewal, namely on isometries, requires new approaches based on mathematically significant tasks. The digital revolution has brought powerful tools but demands changes in the educational process. The use of Dynamic Geometry Environments (DGE), complementing ‘paper and pencil’, can contribute to provide rich learning environments, enhanced by Classroom Management Systems (CMS) such as iTALC. Indeed, the qualitative case study we carried out suggests that: the creation of an "atmosphere" of cooperation, collaboration and sharing seems to increase creativity dimensions; the use of DGE can facilitate the emergence of more creative productions; development of knowledge and geometrical capabilities seems to benefit from a complementary approach that combines DGE and ‘paper and pencil’ environments. Different approaches, with a more technological and exploratory nature seem to promote more favourable attitudes towards mathematics in general, and geometry, in particular.
Resumo:
The stereographic projection is a bijective smooth map which allows us to think the sphere as the extended complex plane. Among its properties it should be emphasized the remarkable property of being angle conformal that is, it is an angle measure preserving map. Unfortunately, this projection map does not preserve areas. Besides being conformal it has also the property of projecting spherical circles in either circles or straight lines in the plane This type of projection maps seems to have been known since ancient times by Hipparchus (150 BC), being Ptolemy (AD 140) who, in his work entitled "The Planisphaerium", provided a detailed description of such a map. Nonetheless, it is worthwhile to mention that the property of the invariance of angle measure has only been established much later, in the seventeenth century, by Thomas Harriot. In fact, it was exactly in that century that the Jesuit François d’Aguilon introduced the terminology "stereographic projection" for this type of maps, which remained up to our days. Here, we shall show how we create in GeoGebra, the PRiemannz tool and its potential concerning the visualization and analysis of the properties of the stereographic projection, in addition to the viewing of the amazing relations between Möbius Transformations and stereographic projections.
Resumo:
Complex functions, generally feature some interesting peculiarities, seen as extensions real functions, complementing the study of real analysis. However, the visualization of some complex functions properties requires the simultaneous visualization of two-dimensional spaces. The multiple Windows of GeoGebra, combined with its ability of algebraic computation with complex numbers, allow the study of the functions defined from ℂ to ℂ through traditional techniques and by the use of Domain Colouring. Here, we will show how we can use GeoGebra for the study of complex functions, using several representations and creating tools which complement the tools already provided by the software. Our proposals designed for students of the first year of engineering and science courses can and should be used as an educational tool in collaborative learning environments. The main advantage in its use in individual terms is the promotion of the deductive reasoning (conjecture / proof). In performed the literature review few references were found involving this educational topic and by the use of a single software.
Resumo:
The aim of this workshop to present some of the strategies studied to use GeoGebra in the analysis of complex functions. The proposed tasks focus on complex analysis topics target for students of the 1st year of higher education, which can be easily adapted to pre-university students. In the first part of this workshop we will illustrate how to use the two graphical windows of GeoGebra to represent complex functions of complex variable. The second part will present the use of the dynamic color Geogebra in order to obtain Coloring domains that correspond to the graphic representation of complex functions. Finally, we will use the threedimensional graphics window in GeoGebra to study the component functions of a complex function. During the workshop will be provided scripts orientation of the different tasks proposed to be held on computers with Geogebra version 5.0 or high.
Resumo:
A sociedade atual requer indivíduos preparados para apresentar soluções inovadoras aos problemas encontrados nas mais variadas situações, sendo a criatividade considerada, na última década, uma competência essencial para o progresso. Neste contexto, emerge a necessidade da escola fomentar o seu desenvolvimento em qualquer área, e em particular, na Matemática. Por outro lado, não será alheio a este facto a promoção de um ensino, também ele, criativo. Tal ensino exige desde logo uma original, fluente e flexível gestão curricular envolvendo uma adequada seleção e ou (re) criação de tarefas relevantes, criteriosamente sequenciadas e autonomamente resolvidas pelos alunos, numa lógica de interdisciplinaridade e com recurso a tecnologia. No caso especifico das transformações geométricas isométricas, uma abordagem interdisciplinar reforçada com o recurso a ambientes de geometria dinâmica poderá constituir uma mais-valia nesse processo. Assim, desenvolveu-se este estudo, com o objetivo de avaliar o impacto de uma abordagem interdisciplinar, potenciada com o GeoGebra, no desenvolvimento de competências geométricas relacionadas com as isometrias, frisos e rosáceas, e em simultâneo, no desenvolvimento da criatividade e representações da mesma, de alunos do oitavo ano de escolaridade. Para isso desenvolveu-se um estudo de caso, centrado em três pares de alunos, que resolveram um conjunto de tarefas de natureza exploratória, com recurso ao GeoGebra e envolvendo a disciplina de Educação Visual. A análise dos dados recolhidos foi, essencialmente, de natureza qualitativa, tendo sido a observação, a inquirição e a análise documental,as principais técnicas de recolha de dados. A análise de conteúdo a que foram submetidos os dados, permitiu concluir que a implementação de uma abordagem interdisciplinar, centrada numa sequência de tarefas e aliada ao GeoGebra, potenciou a apropriação dos conhecimentos geométricos em causa e a sua aplicação. Contribuiu, também, para o desenvolvimento de atitudes favoráveis em relação à matemática e à geometria em particular. Por outro lado, os dados sugerem que tal abordagem permite obter indícios do desenvolvimento da criatividade nos alunos e de alterações a algumas das suas representações.