3 resultados para Magnesium Diecasting Alloys

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of this PhD thesis was to provide convincing demonstration for a breakthrough concept of pyroelectrolysis at laboratory scale. One attempted to identify fundamental objections and/or the most critical constraints, to propose workable concepts for the overall process and for feasible electrodes, and to establish the main requirements on a clearer basis. The main effort was dedicated to studying suitable anode materials to be developed for large scale industrial units with molten silicate electrolyte. This concept relies on consumable anodes based on iron oxides, and a liquid Fe cathode, separated from the refractory materials by a freeze lining (solid) layer. In addition, one assessed an alternative concept of pyroelectrolysis with electron blocking membranes, and developed a prototype at small laboratory scale. The main composition of the molten electrolyte was based on a magnesium aluminosilicate composition, with minimum liquidus temperature, and with different additions of iron oxide. One studied the dynamics of devitrification of these melts, crystallization of iron oxides or other phases, and Fe2+/Fe3+ redox changes under laser zone melting, at different pulling rates. These studies were intended to provide guidelines for dissolution of raw materials (iron oxides) in the molten electrolyte, to assess compatibility with magnetite based consumable anodes, and to account for thermal gradients or insufficient thermal management in large scale cells. Several laboratory scale prototype cells were used to demonstrate the concept of pyroelectrolysis with electron blocking, and to identify the most critical issues and challenges. Operation with and without electron blocking provided useful information on transport properties of the molten electrolyte (i.e., ionic and electronic conductivities), their expected dependence on anodic and cathodic overpotentials, limitations in faradaic efficiency, and onset of side electrochemical reactions. The concept of consumable anodes was based on magnetite and derived spinel compositions, for their expected redox stability at high temperatures, even under oxidising conditions. Spinel compositions were designed for prospective gains in refractoriness and redox stability in wider ranges of conditions (T, pO2 and anodic overpotentials), without excessive penalty for electrical conductivity, thermomechanical stability or other requirements. Composition changes were also mainly based on components of the molten aluminosilicate melt, to avoid undue contamination and to minimize the dissolution rate of consumable anodes. Additional changes in composition were intended for prospective pyroelectrolysis of Fe alloys, with additions of different elements (Cr, Mn, Ni, Ti).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Ph.D. research focuses on asymmetric rolling (ASR), as an alternative method for improving mechanical responses of aluminium-magnesium alloy and interstitial free (IF) steel regarding industrial requirements. Aluminium alloys are attractive materials in various industries due to their appropriate properties such as low density and corrosion resistance; however, their low formability has limited their applications. As formability of aluminium alloys can be improved through texture development, part of this dissertation is dedicated to producing the desired crystallographic texture with the ASR process. Two types of ASR (i.e. reverse and continuous asymmetric rolling) were investigated. The impact of shear deformation imposed by ASR processes on developing the desirable texture and consequently on mechanical behaviours was observed. The developed shear texture increased the normal and also planar anisotropy. Texture evolution during plastic deformation as well as induced mechanical behaviour were simulated using the “self-consistent” and Taylor models. Interstitial free (IF) steel was the second material selected in this dissertation. Since IF steel is one of the most often used materials in automotive industries it was chosen to investigate the effect of shear deformation through ASR on its properties. Two types of reverse and continuous asymmetric rolling were carried out to deform IF steel sheets. The results of optical microscopy and atomic force microscopy observations showed no significant difference between the grains’ morphology of asymmetric and conventionally rolled samples, whereas the obtained results of transmission electron microscopy indicated that fine and equiaxed dislocation cells were formed through the asymmetric rolling process. This structure is due to imposed shear deformation during the ASR process. Furthermore, the mechanical behaviour of deformed and annealed sheets was evaluated through uniaxial tensile tests. Results showed that at low thickness reductions (18%) the asymmetric rolled sample presented higher stress than that of the conventionally rolled sheet; while for higher thickness reductions (60%) the trend was reversed. The texture analyses indicated that intense rolling texture components which developed through 60% thickness reduction of conventional rolling cause a relatively higher stress; on the contrary the fine structure resulting from ASR appears to be the source of higher stress observed after pre-deformation of 18%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the R&D work mainly focused on the mechanical and microstructural analysis of severe plastic deformation (SPD) of Al–Zn alloys and the development of microstructure–based models to explain the observed behaviors is presented. Evolution of the microstructure and mechanical properties of Al–30wt% Zn alloy after the SPD by the high–pressure torsion (HPT) has been investigated in detail regarding the increasing amount of deformation. SPD leads to the gradual grain refinement and decomposition of the Al–based supersaturated solid solution. The initial microstructure of the Al–30wt% Zn alloy contains Al and Zn phases with grains sizes respectively of 15 and 1 micron. The SPD in compression leads to a gradual decrease of the Al and Zn phase grain sizes down to 4 microns and 252 nm, respectively, until a plastic strain of 0.25 is reached. At the same time, the average size of the Zn particles in the bulk of the Al grains increases from 20 to 60 nm and that of the Zn precipitates near or at the grain boundaries increases as well. This microstructure transformation is accompanied at the macroscopic scale by a marked softening of the alloy. The SPD produced by HPT is conducted up to a shear strain of 314. The final Al and Zn grains refine down to the nanoscale with sizes of 370 nm and 170 nm, respectively. As a result of HPT, the Zn–rich (Al) supersaturated solid solution decomposes completely and reaches the equilibrium state corresponding to room temperature and its leads to the material softening. A new microstructure–based model is proposed to describe the softening process occurring during the compression of the supersaturated Al–30wt% Zn alloy. The model successfully describes the above–mentioned phenomena based on a new evolution law expressing the dislocation mean free path as a function of the plastic strain. The softening of the material behavior during HPT process is captured very well by the proposed model that takes into consideration the effects of solid solution hardening and its decomposition, Orowan looping and dislocation density evolution. In particular, it is demonstrated that the softening process that occurs during HPT can be attributed mainly to the decomposition of the supersaturated solid solution and, in a lesser extent, to the evolution of the dislocation mean free path with plastic strain.