1 resultado para Machine Learning Robotics Artificial Intelligence Bayesian Networks
em Repositório Institucional da Universidade de Aveiro - Portugal
Filtro por publicador
- Repository Napier (2)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (6)
- Abertay Research Collections - Abertay University’s repository (2)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (41)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (80)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (39)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (47)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (12)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (16)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (22)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (25)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (8)
- Department of Computer Science E-Repository - King's College London, Strand, London (12)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (11)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (25)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (4)
- Ecology and Society (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico do Porto, Portugal (47)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (18)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (8)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (15)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (2)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de La Laguna (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (67)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (12)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (4)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (50)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (13)
- Universidade dos Açores - Portugal (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universidade Metodista de São Paulo (3)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (62)
- Université de Montréal (2)
- Université de Montréal, Canada (44)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (10)
- University of Queensland eSpace - Australia (43)
- University of Southampton, United Kingdom (3)
- University of Washington (11)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
This thesis addresses the Batch Reinforcement Learning methods in Robotics. This sub-class of Reinforcement Learning has shown promising results and has been the focus of recent research. Three contributions are proposed that aim to extend the state-of-art methods allowing for a faster and more stable learning process, such as required for learning in Robotics. The Q-learning update-rule is widely applied, since it allows to learn without the presence of a model of the environment. However, this update-rule is transition-based and does not take advantage of the underlying episodic structure of collected batch of interactions. The Q-Batch update-rule is proposed in this thesis, to process experiencies along the trajectories collected in the interaction phase. This allows a faster propagation of obtained rewards and penalties, resulting in faster and more robust learning. Non-parametric function approximations are explored, such as Gaussian Processes. This type of approximators allows to encode prior knowledge about the latent function, in the form of kernels, providing a higher level of exibility and accuracy. The application of Gaussian Processes in Batch Reinforcement Learning presented a higher performance in learning tasks than other function approximations used in the literature. Lastly, in order to extract more information from the experiences collected by the agent, model-learning techniques are incorporated to learn the system dynamics. In this way, it is possible to augment the set of collected experiences with experiences generated through planning using the learned models. Experiments were carried out mainly in simulation, with some tests carried out in a physical robotic platform. The obtained results show that the proposed approaches are able to outperform the classical Fitted Q Iteration.