2 resultados para Linear Codes
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
The main results of this paper are twofold: the first one is a matrix theoretical result. We say that a matrix is superregular if all of its minors that are not trivially zero are nonzero. Given a a×b, a ≥ b, superregular matrix over a field, we show that if all of its rows are nonzero then any linear combination of its columns, with nonzero coefficients, has at least a−b + 1 nonzero entries. Secondly, we make use of this result to construct convolutional codes that attain the maximum possible distance for some fixed parameters of the code, namely, the rate and the Forney indices. These results answer some open questions on distances and constructions of convolutional codes posted in the literature.
Resumo:
In this paper we use some classical ideas from linear systems theory to analyse convolutional codes. In particular, we exploit input-state-output representations of periodic linear systems to study periodically time-varying convolutional codes. In this preliminary work we focus on the column distance of these codes and derive explicit necessary and sufficient conditions for an (n, 2, 1) periodically time-varying convolutional code to have Maximum Distance Profile (MDP).