2 resultados para League Of Legends
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Interest on using teams of mobile robots has been growing, due to their potential to cooperate for diverse purposes, such as rescue, de-mining, surveillance or even games such as robotic soccer. These applications require a real-time middleware and wireless communication protocol that can support an efficient and timely fusion of the perception data from different robots as well as the development of coordinated behaviours. Coordinating several autonomous robots towards achieving a common goal is currently a topic of high interest, which can be found in many application domains. Despite these different application domains, the technical problem of building an infrastructure to support the integration of the distributed perception and subsequent coordinated action is similar. This problem becomes tougher with stronger system dynamics, e.g., when the robots move faster or interact with fast objects, leading to tighter real-time constraints. This thesis work addressed computing architectures and wireless communication protocols to support efficient information sharing and coordination strategies taking into account the real-time nature of robot activities. The thesis makes two main claims. Firstly, we claim that despite the use of a wireless communication protocol that includes arbitration mechanisms, the self-organization of the team communications in a dynamic round that also accounts for variable team membership, effectively reduces collisions within the team, independently of its current composition, significantly improving the quality of the communications. We will validate this claim in terms of packet losses and communication latency. We show how such self-organization of the communications can be achieved in an efficient way with the Reconfigurable and Adaptive TDMA protocol. Secondly, we claim that the development of distributed perception, cooperation and coordinated action for teams of mobile robots can be simplified by using a shared memory middleware that replicates in each cooperating robot all necessary remote data, the Real-Time Database (RTDB) middleware. These remote data copies, which are updated in the background by the selforganizing communications protocol, are extended with age information automatically computed by the middleware and are locally accessible through fast primitives. We validate our claim showing a parsimonious use of the communication medium, improved timing information with respect to the shared data and the simplicity of use and effectiveness of the proposed middleware shown in several use cases, reinforced with a reasonable impact in the Middle Size League of RoboCup.
Resumo:
For a robot be autonomous and mobile, it requires being attached with a set of sensors that helps it to have a better perception of the surrounding world, to manage to localize itself and the surrounding objects. CAMBADA is the robotic soccer team of the IRIS research group, from IEETA, University of Aveiro, that competes in the Middle-Size League of RoboCup. In competition, in order to win, the main objective of the game it's to score more goals than the conceded, so not conceding goals, and score as much as possible it's desirable, thus, this thesis focus on adapt an agent with a better localization capacity in defensive and offensive moments. It was introduced a laser range finder to the CAMBADA robots, making them capable of detecting their own and the opponent goal, and to detect the opponents in specific game situations. With the new information and adapting the Goalie and Penalty behaviors, the CAMBADA goalkeeper is now able to detect and track its own goal and the CAMBADA striker has a better performance in a penalty situation. The developed work was incorporated within the competition software of the robots, which allows the presentation, in this thesis, of the experimental results obtained with physical robots on the laboratory field.