2 resultados para Kähler
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Compressed sensing is a new paradigm in signal processing which states that for certain matrices sparse representations can be obtained by a simple l1-minimization. In this thesis we explore this paradigm for higher-dimensional signal. In particular three cases are being studied: signals taking values in a bicomplex algebra, quaternionic signals, and complex signals which are representable by a nonlinear Fourier basis, a so-called Takenaka-Malmquist system.
Resumo:
In this paper, we focus on a Riemann–Hilbert boundary value problem (BVP) with a constant coefficients for the poly-Hardy space on the real unit ball in higher dimensions. We first discuss the boundary behaviour of functions in the poly-Hardy class. Then we construct the Schwarz kernel and the higher order Schwarz operator to study Riemann–Hilbert BVPs over the unit ball for the poly- Hardy class. Finally, we obtain explicit integral expressions for their solutions. As a special case, monogenic signals as elements in the Hardy space over the unit sphere will be reconstructed in the case of boundary data given in terms of functions having values in a Clifford subalgebra. Such monogenic signals represent the generalization of analytic signals as elements of the Hardy space over the unit circle of the complex plane.