4 resultados para Integrated energy systems
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Resource management policies are frequently designed and planned to target specific needs of particular sectors, without taking into account the interests of other sectors who share the same resources. In a climate of resource depletion, population growth, increase in energy demand and climate change awareness, it is of great importance to promote the assessment of intersectoral linkages and, by doing so, understand their effects and implications. This need is further augmented when common use of resources might not be solely relevant at national level, but also when the distribution of resources ranges over different nations. This dissertation focuses on the study of the energy systems of five south eastern European countries, which share the Sava River Basin, using a water-food(agriculture)-energy nexus approach. In the case of the electricity generation sector, the use of water is essential for the integrity of the energy systems, as the electricity production in the riparian countries relies on two major technologies dependent on water resources: hydro and thermal power plants. For example, in 2012, an average of 37% of the electricity production in the SRB countries was generated by hydropower and 61% in thermal power plants. Focusing on the SRB, in terms of existing installed capacities, the basin accommodates close to a tenth of all hydropower capacity while providing water for cooling to 42% of the net capacity of thermal power currently in operation in the basin. This energy-oriented nexus study explores the dependency on the basin’s water resources of the energy systems in the region for the period between 2015 and 2030. To do so, a multi-country electricity model was developed to provide a quantification ground to the analysis, using the open-source software modelling tool OSeMOSYS. Three main areas are subject to analysis: first, the impact of energy efficiency and renewable energy strategies in the electricity generation mix; secondly, the potential impacts of climate change under a moderate climate change projection scenario; and finally, deriving from the latter point, the cumulative impact of an increase in water demand in the agriculture sector, for irrigation. Additionally, electricity trade dynamics are compared across the different scenarios under scrutiny, as an effort to investigate the implications of the aforementioned factors in the electricity markets in the region.
Resumo:
Solid oxide fuel (SOFCs) and electrolyzer (SOECs) cells have been promoted as promising technologies for the stabilization of fuel supply and usage in future green energy systems. SOFCs are devices that produce electricity by the oxidation of hydrogen or hydrocarbon fuels with high efficiency. Conversely, SOECs can offer the reverse reaction, where synthetic fuels can be generated by the input of renewable electricity. Due to this similar but inverse nature of SOFCs and SOECs, these devices have traditionally been constructed from comparable materials. Nonetheless, several limitations have hindered the entry of SOFCs and SOECs into the marketplace. One of the most debilitating is associated with chemical interreactions between cell components that can lead to poor longevities at high working temperatures and/or depleted electrochemcial performance. Normally such interreactions are countered by the introduction of thin, purely ionic conducting, buffer layers between the electrode and electrolyte interface. The objective of this thesis is to assess if possible improvements in electrode kinetics can also be obtained by modifying the transport properties of these buffer layers by the introduction of multivalent cations. The introduction of minor electronic conductivity in the surface of the electrolyte material has previously been shown to radically enhance the electrochemically active area for oxygen exchange, reducing polarization resistance losses. Hence, the current thesis aims to extend this knowledge to tailor a bi-functional buffer layer that can prevent chemical interreaction while also enhancing electrode kinetics.The thesis selects a typical scenario of an yttria stabilized zirconia electrolyte combined with a lanthanide containing oxygen electrode. Gadolinium, terbium and praseodymium doped cerium oxide materials have been investigated as potential buffer layers. The mixed ionic electronic conducting (MIEC) properties of the doped-cerium materials have been analyzed and collated. A detailed analysis is further presented of the impact of the buffer layers on the kinetics of the oxygen electrode in SOFC and SOEC devices. Special focus is made to assess for potential links between the transport properties of the buffer layer and subsequent electrode performance. The work also evaluates the electrochemical performance of different K2NiF4 structure cathodes deposited onto a peak performing Pr doped-cerium buffer layer, the influence of buffer layer thickness and the Pr content of the ceria buffer layer. It is shown that dramatic increases in electrode performance can be obtained by the introduction of MIEC buffer layers, where the best performances are shown to be offered by buffer layers of highest ambipolar conductivity. These buffer layers are also shown to continue to offer the bifunctional role to protect from unwanted chemical interactions at the electrode/electrolyte interface.
Resumo:
Nos dias de hoje a sociedade exige níveis qualitativos de vida cada vez mais elevados, o que torna prioritária a conceção de sistemas eficientes, não poluidores, económicos e diversificados que permitam uma gestão integrada e racionalizada de recursos tão escasso como é o da água e da energia. Em sistemas de abastecimento de água, o uso de válvulas redutoras de pressão (VRP) visa a uniformização e controlo de pressões, promovendo uma perda de carga localizada que dissipa a energia hidráulica presente através da redução dos valores de pressão a jusante. Estas são fundamentais no controlo e redução de pressão. A utilização de microturbinas é uma alternativa sustentável para o controle de pressão e, simultaneamente, para a produção de energia elétrica. Trata-se de um método de mitigação para controlar as perdas referidas convergindo no âmbito da eficiência energética. Na perspetiva de promover um aproveitamento de energia nas redes de abastecimento de água, o presente trabalho sugere a substituição de válvulas redutoras de pressão (VRP) por microturbinas. Desse modo, apresenta-se um método automático de seleção de (i) local para implementação e (ii) projeto de microturbinas para sistemas de abastecimento de água. Para a modelação do funcionamento dos sistemas hidráulicos recorre-se ao simulador hidráulico EPANET. Esta ferramenta possibilita avaliação de caudais e pressões em todos os pontos da rede durante um determinado intervalo de tempo. A metodologia desenvolvida permite selecionar o local ideal no sistema hidráulico através de uma análise de cada secção conduta-nó escolhendo-se a melhor opção baseada na produção de energia. Depois da localização procede-se à seleção do tipo de turbina (Kaplan, Francis, Pelton e Cross-flow) que vai depender das características do sistema hidráulico. Na etapa seguinte apresenta-se os resultados obtidos pela turbina nomeadamente a produção de energia elétrica anual, o investimento necessário, o tempo de retorno e a rentabilização ao final de um período de 25 anos. Na última etapa da metodologia, de forma avaliar o comportamento do sistema final, realiza-se uma nova simulação da rede mas tendo em conta a introdução da microturbina no local. Apresentam-se alguns casos de estudo que validam a ferramenta desenvolvida. A metodologia desenvolvida é comparada com um caso de estudo real. Em ambos os exemplos simulados a metodologia aplicada permite obter soluções com ganhos energéticos significativos associados ao sistema. Apenas num dos exemplos se observaram que a implementação da microturbina no sistema hidráulico não seria economicamente rentável.
Resumo:
O presente relatório de projeto explicita as etapas da elaboração e os resultados obtidos através da realização de um projeto de reabilitação energética de um complexo de piscinas interiores. Esta reabilitação energética tem por objetivo a redução dos custos energéticos através da subtração de consumos supérfluos de energia ou da melhoria da eficiência energética dos equipamentos. Para alcançar estes objetivos recorreu-se à simulação dinâmica do edifício de modo a estimar múltiplas variáveis energéticas e identificar quais os setores e equipamentos que maior influência têm no consumo energético do complexo em estudo. Para a realização da simulação, recorreu-se a um software desenvolvido pelo DOE dos Estados Unidos da América, o Energy Plus, com o auxílio do Design Builder, que permite a criação e edição do modelo de forma mais fácil e acessível. Os valores retirados da simulação foram posteriormente comparados com valores reais. Com o complexo caraterizado e os principais consumidores identificados foi possível iniciar o estudo das medidas de melhoria da eficiência energética. As principais medidas estudadas incidiram na instalação de coberturas isotérmicas nas piscinas para reduzir a perda de energia através da evaporação e da radiação, a introdução de fontes de energia renovável como alternativa energética, substituição de elementos do sistema de iluminação e o aproveitamento de energia dissipada em equipamentos. Com este estudo, a entidade gestora do complexo encontra-se mais informada e pronta a tomar decisões que influenciem de forma significativa o consumo de energia no complexo, podendo optar pela instalação de alguma das medidas propostas.