1 resultado para Insulina Secreção Teses
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Estrogens, such as 17β-estradiol (E2) are essential for normal growth and differentiation of the mammary gland. There are two estrogen receptors (ERs), ERα and ERβ which are ligand activated transcription factors. ERα stimulates proliferation and is the single most powerful predictor of breast cancer prognosis and since 70% of breast cancers express ERα, strategies to block this receptor are the primary breast cancer treatment. Unlike ERα, the role of ERβ in breast cancer and its potential as alternative therapeutic target remains controversial, mainly due to the lack of correlation between results obtained in vitro and epidemiological studies. The aim of this thesis was to increase our understanding of the molecular and cellular mechanisms of estrogen signaling in normal and cancerous cells, in different cellular contexts and with focus on ERβ. In Paper I we characterized the effect of the flavone PD098059 - which is a commonly used MEK1 inhibitor - on activation of transcription by ERα and ERβ. We found that the estrogenic effect of PD098059 is dose dependent in concentrations ranging from 1 – 10 μM and that activation of transcription by ER is suppressed by the inhibitory effect of PD98059 on MEK1 at concentrations above 50 μM. In agreement with its flavone nature, PD098059 had a much stronger effect on ERβ than on ERα transcriptional activity. Therefore, use of this compound for the study of signalling events in cells expressing ER should be carefully considered. In Paper II we assessed the effect of ERβ agonists in vivo and administered under different conditions in vitro. In basal conditions, ERβ induced apoptosis; however, in vivo ERβ agonists stimulated proliferation and inhibited apoptosis. In vivo effects were reproduced in culture, by activation of MAPK/ERK½ pathway with epidermal growth factor or basement membrane extract. In addition, insulin signalling and PI3-K/AKT activation was necessary for stimulation of proliferation. These results suggest that the cellular context modulates ERβ activity. Manuscript presents preliminary work aimed at the set-up of a methodological strategy to isolate ERs and to identify interacting proteins in different cellular contexts and which could modulate the bi-phased effects of ERβ in cell growth. In conclusion, the studies presented in this thesis contribute to clarify the apparent contradictory information regarding ERβ function in normal and cancerous mammary epithelium and suggest that the cellular context should be considered when ERβ effects are studied.