3 resultados para Information Delivery Service

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

O projeto desenvolvido tem como objetivo principal a melhoria da eficiência na prestação de serviços de reparação de chapa e pintura na Caetano Auto Colisão, através da aplicação de ferramentas associadas à filosofia Lean. Apesar das ferramentas e técnicas lean estarem bem exploradas nas empresas de produção e manufatura, o mesmo não se verifica em relação às empresas da área dos serviços. O Value Stream Mapping é uma ferramenta lean que consiste no mapeamento do fluxo de materiais e informação necessários para a realização das atividades (que acrescentam e não acrescentam valor), desempenhadas pelos colaboradores, fornecedores e distribuidores, desde a obtenção do pedido do cliente até à entrega final do serviço. Através desta ferramenta é possível identificar as atividades que não acrescentam valor para o processo e propor medidas de melhoria que resultem na eliminação ou redução das mesmas. Com base neste conceito, foi realizado o mapeamento do processo de prestação de serviços de chapa e pintura e identificados os focos de ineficiência. A partir desta análise foram sugeridas melhorias que têm como objetivo atingir o estado futuro proposto assim como tornar o processo mais eficiente. Duas destas melhorias passaram pela implementação dos 5S na sala das tintas e pela elaboração de um relatório A3 para o centro de lavagens. O projeto realizado permitiu o estudo de um problema real numa empresa de serviços, bem como a proposta de um conjunto de melhorias que a médio prazo se espera virem a contribuir para a melhoria da eficiência na prestação de serviços de chapa e pintura.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The last couple of decades have been the stage for the introduction of new telecommunication networks. It is expected that in the future all types of vehicles, such as cars, buses and trucks have the ability to intercommunicate and form a vehicular network. Vehicular networks display particularities when compared to other networks due to their continuous node mobility and their wide geographical dispersion, leading to a permanent network fragmentation. Therefore, the main challenges that this type of network entails relate to the intermittent connectivity and the long and variable delay in information delivery. To address the problems related to the intermittent connectivity, a new concept was introduced – Delay Tolerant Network (DTN). This architecture is built on a Store-Carry-and-Forward (SCF) mechanism in order to assure the delivery of information when there is no end-to-end path defined. Vehicular networks support a multiplicity of services, including the transportation of non-urgent information. Therefore, it is possible to conclude that the use of a DTN for the dissemination of non-urgent information is able to surpass the aforementioned challenges. The work developed focused on the use of DTNs for the dissemination of non-urgent information. This information is originated in the network service provider and should be available on mobile network terminals during a limited period of time. In order to do so, four different strategies were deployed: Random, Least Number of Hops First (LNHF), Local Rarest Bundle First (LRBF) e Local Rarest Generation First (LRGF). All of these strategies have a common goal: to disseminate content into the network in the shortest period of time and minimizing network congestion. This work also contemplates the analysis and implementation of techniques that reduce network congestion. The design, implementation and validation of the proposed strategies was divided into three stages. The first stage focused on creating a Matlab emulator for the fast implementation and strategy validation. This stage resulted in the four strategies that were afterwards implemented in the DTNs software Helix – developed in a partnership between Instituto de Telecomunicac¸˜oes (IT) and Veniam R , which are responsible for the largest operating vehicular network worldwide that is located in Oporto city. The strategies were later evaluated on an emulator that was built for the largescale testing of DTN. Both emulators account for vehicular mobility based on information previously collected from the real platform. Finally, the strategy that presented the best overall performance was tested on a real platform – in a lab environment – for concept and operability demonstration. It is possible to conclude that two of the implemented strategies (LRBF and LRGF) can be deployed in the real network and guarantee a significant delivery rate. The LRBF strategy has the best performance in terms of delivery. However, it needs to add a significant overhead to the network in order to work. In the future, tests of scalability should be conducted in a real environment in order to confirm the emulator results. The real implementation of the strategies should be accompanied by the introduction of new types of services for content distribution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Over the last decade, the most widespread approaches for traditional management were based on the Simple Network Management Protocol (SNMP) or Common Management Information Protocol (CMIP). However, they both have several problems in terms of scalability, due to their centralization characteristics. Although the distributed management approaches exhibit better performance in terms of scalability, they still underperform regarding communication costs, autonomy, extensibility, exibility, robustness, and cooperation between network nodes. The cooperation between network nodes normally requires excessive overheads for synchronization and dissemination of management information in the network. For emerging dynamic and large-scale networking environments, as envisioned in Next Generation Networks (NGNs), exponential growth in the number of network devices and mobile communications and application demands is expected. Thus, a high degree of management automation is an important requirement, along with new mechanisms that promote it optimally and e ciently, taking into account the need for high cooperation between the nodes. Current approaches for self and autonomic management allow the network administrator to manage large areas, performing fast reaction and e ciently facing unexpected problems. The management functionalities should be delegated to a self-organized plane operating within the network, that decrease the network complexity and the control information ow, as opposed to centralized or external servers. This Thesis aims to propose and develop a communication framework for distributed network management which integrates a set of mechanisms for initial communication, exchange of management information, network (re) organization and data dissemination, attempting to meet the autonomic and distributed management requirements posed by NGNs. The mechanisms are lightweight and portable, and they can operate in di erent hardware architectures and include all the requirements to maintain the basis for an e cient communication between nodes in order to ensure autonomic network management. Moreover, those mechanisms were explored in diverse network conditions and events, such as device and link errors, di erent tra c/network loads and requirements. The results obtained through simulation and real experimentation show that the proposed mechanisms provide a lower convergence time, smaller overhead impact in the network, faster dissemination of management information, increase stability and quality of the nodes associations, and enable the support for e cient data information delivery in comparison to the base mechanisms analyzed. Finally, all mechanisms for communication between nodes proposed in this Thesis, that support and distribute the management information and network control functionalities, were devised and developed to operate in completely decentralized scenarios.