2 resultados para Human Factors and Ergonomics
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
A compreensão dos impactes das alterações climáticas é fundamental para a gestão a longo do prazo dos ecossistemas estuarinos. Esta compreensão só poderá ser efectiva considerando a variabilidade climática natural e o papel relativo das intervenções antropogénicas nestes ecossistemas. Assim, a presente dissertação analisa a influência das alterações climáticas e pressões antropogénicas na qualidade da água e dinâmica ecológica da Ria de Aveiro com base numa abordagem integrada, que combinou a análise de séries temporais dos últimos 25 anos e a modelação numérica de elevada resolução de cenários futuros de alterações climáticas e intervenções antropogénicas. A componente de modelação de qualidade da água e ecológica foi melhorada a vários níveis. A análise de sensibilidade do modelo 3D hidrodinâmicoecológico ECO-SELFE aplicado à Ria de Aveiro e a revisão das constantes de semi-saturação para absorção de nutrientes pelo fitoplâncton contribuíram para a precisão e robustez das aplicações. A concentração do fitoplâncton foi significativamente influenciada pelas taxas de crescimento do fitoplâncton e de mortalidade e excreção do zooplâncton, e apresentou uma sensibilidade reduzida à variação das constantes de semi-saturação na gama identificada para as diatomáceas. O acoplamento do ECO-SELFE a um modelo de campo próximo e a integração do ciclo do oxigénio aumentaram a sua capacidade de representação dos processos e das escalas espaciais relevantes. A validação do ECO-SELFE foi realizada com base num conjunto de campanhas específicas realizadas no canal de Mira. Os padrões espaciais e temporais observados para as várias variáveis (clorofila a, nutrientes, oxigénio dissolvido, salinidade, temperatura da água, correntes e níveis) foram simulados com erros menores ou semelhantes aos obtidos neste tipo de aplicações. A análise dos padrões de variabilidade espacial e temporal da qualidade da água e ecológica na Ria de Aveiro a diferentes escalas, efectuada com base nos dados históricos de 1985 a 2010 complementados pelas campanhas realizadas, sugeriu uma influência combinada da variabilidade climática e das acções antropogénicas. Os cenários futuros de alterações climáticas e intervenções antropogénicas simulados evidenciaram uma influência mais significativa das alterações climáticas quando comparadas com os efeitos das acções antropogénicas analisadas. As variações mais significativas são previstas para os cenários de subida do nível do mar, seguidos dos cenários de alterações dos regimes hidrológicos, evidenciando o papel da circulação (maré e caudal fluvial) no estabelecimento da qualidade da água e dinâmica ecológica na laguna. Para os cenários de subida do nível do mar são previstos decréscimos significativos da clorofila a e dos nutrientes a jusante e nas zonas intermédias do canal, e um aumento significativo da salinidade a montante. Estas alterações poderão favorecer modificações da composição e distribuição das comunidades, afectando a cadeia alimentar e causando uma progressão para montante de espécies marinhas. Os resultados sugerem ainda que os efeitos poderão ser mais significativos em estuários pouco profundos.
Resumo:
This thesis reports the application of metabolomics to human tissues and biofluids (blood plasma and urine) to unveil the metabolic signature of primary lung cancer. In Chapter 1, a brief introduction on lung cancer epidemiology and pathogenesis, together with a review of the main metabolic dysregulations known to be associated with cancer, is presented. The metabolomics approach is also described, addressing the analytical and statistical methods employed, as well as the current state of the art on its application to clinical lung cancer studies. Chapter 2 provides the experimental details of this work, in regard to the subjects enrolled, sample collection and analysis, and data processing. In Chapter 3, the metabolic characterization of intact lung tissues (from 56 patients) by proton High Resolution Magic Angle Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) spectroscopy is described. After careful assessment of acquisition conditions and thorough spectral assignment (over 50 metabolites identified), the metabolic profiles of tumour and adjacent control tissues were compared through multivariate analysis. The two tissue classes could be discriminated with 97% accuracy, with 13 metabolites significantly accounting for this discrimination: glucose and acetate (depleted in tumours), together with lactate, alanine, glutamate, GSH, taurine, creatine, phosphocholine, glycerophosphocholine, phosphoethanolamine, uracil nucleotides and peptides (increased in tumours). Some of these variations corroborated typical features of cancer metabolism (e.g., upregulated glycolysis and glutaminolysis), while others suggested less known pathways (e.g., antioxidant protection, protein degradation) to play important roles. Another major and novel finding described in this chapter was the dependence of this metabolic signature on tumour histological subtype. While main alterations in adenocarcinomas (AdC) related to phospholipid and protein metabolisms, squamous cell carcinomas (SqCC) were found to have stronger glycolytic and glutaminolytic profiles, making it possible to build a valid classification model to discriminate these two subtypes. Chapter 4 reports the NMR metabolomic study of blood plasma from over 100 patients and near 100 healthy controls, the multivariate model built having afforded a classification rate of 87%. The two groups were found to differ significantly in the levels of lactate, pyruvate, acetoacetate, LDL+VLDL lipoproteins and glycoproteins (increased in patients), together with glutamine, histidine, valine, methanol, HDL lipoproteins and two unassigned compounds (decreased in patients). Interestingly, these variations were detected from initial disease stages and the magnitude of some of them depended on the histological type, although not allowing AdC vs. SqCC discrimination. Moreover, it is shown in this chapter that age mismatch between control and cancer groups could not be ruled out as a possible confounding factor, and exploratory external validation afforded a classification rate of 85%. The NMR profiling of urine from lung cancer patients and healthy controls is presented in Chapter 5. Compared to plasma, the classification model built with urinary profiles resulted in a superior classification rate (97%). After careful assessment of possible bias from gender, age and smoking habits, a set of 19 metabolites was proposed to be cancer-related (out of which 3 were unknowns and 6 were partially identified as N-acetylated metabolites). As for plasma, these variations were detected regardless of disease stage and showed some dependency on histological subtype, the AdC vs. SqCC model built showing modest predictive power. In addition, preliminary external validation of the urine-based classification model afforded 100% sensitivity and 90% specificity, which are exciting results in terms of potential for future clinical application. Chapter 6 describes the analysis of urine from a subset of patients by a different profiling technique, namely, Ultra-Performance Liquid Chromatography coupled to Mass Spectrometry (UPLC-MS). Although the identification of discriminant metabolites was very limited, multivariate models showed high classification rate and predictive power, thus reinforcing the value of urine in the context of lung cancer diagnosis. Finally, the main conclusions of this thesis are presented in Chapter 7, highlighting the potential of integrated metabolomics of tissues and biofluids to improve current understanding of lung cancer altered metabolism and to reveal new marker profiles with diagnostic value.