2 resultados para Histology and histochemistry of digestive tract

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the biology of offshore species is hardened by the difficulties of sampling in the deep-sea environment. Additionally, due to the vastness of the open ocean, knowledge of early life histories of pelagic larvae is still relatively scarce. In decapod species with bentho-pelagic lifestyle, the transition from life in the seafloor to the water column not only is associated with drastic morphological metamorphosis, but also with changes in behavior and feeding ecology. The purpose of the present thesis was to investigate physiological, biochemical and behavioral adaptation occurring during early development of such species. The Norway lobster, Nephrops norvegicus, and the crab Monodaeus couchi were used as a model as these two species are encountered off the NE Atlantic shelf at depth greater than 300 m. Chapter 1 introduces the challenges faced by both adult and larvae inhabiting such remote habitats, including the effect of food availability on development and oceanographic processes on dispersal and recruitment. The thesis follows early life histories, starting with within-brood variability in the fatty acid (FA) profile displayed by developing N. norvegicus embryos. There were no differences in the FA composition of embryos sampled from both sides of the brooding chamber in most females. However, all females exhibited significant differences in the FA profiles of embryos sampled from different pleopods. Potential causes for the variations recorded may be differential female investment during oocyte production or shifts in FA catabolism during the incubation period promoted by embryo’s location within the brooding chamber. Next, feeding rates and digestive enzymes activity of the early stage larvae was investigated in N. norvegicus. Both stages were able to maximize food intake when larvae were scarce and showed increased feeding rate following periods of starvation. Amylase activity indicated that carbohydrates are not the primary energy reserve and that feeding may be required soon after hatching to trigger amylase activity. Protease activity indicated that protein reserves are catabolized under starvation. These results indicate that larvae may maximize prey ingestion in the presence of plankton patches with higher food abundance and minimize the deleterious effects induced by previous periods of intermittent starvation or unsuitable prey densities/types. Additionally, changes in enzymatic activity may allow newly hatched N. norvegicus larvae to metabolize protein reserves to overcome short-term starvation. Vertical migration behavior and the influence of oceanographic properties were studied next. All zoeal stages of M. couchi displayed reverse diel vertical migration. Abundance of early stages was correlated with chlorophyll a levels. An ontogenic shift in vertical distribution explained the results; earlier zoeal stages remain in the food-rich upper water column while later stages migrate to the bottom for settlement. This vertical migration behavior is likely to affect horizontal distribution of larvae. Indeed, global current patterns will result in low inter-annual variations in decapod larvae recruitment, but short term variations such as upwelling events will cause deviation from the expected dispersal pattern. Throughout development, from the embryo to metamorphosis into benthic juvenile, offshore decapods face many challenges. For the developing individual survivorship will depend heavily on food availability but also on the reserves passed on by the mother. Even though vertical migration behavior can allow the larvae to take advantage of depth varying currents for transport, the effect of general circulation pattern will superimpose local current and influence feeding conditions and affect dispersal and recruitment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The common cuttlefish, Sepia officinalis, is a necto-benthic cephalopod that can live in coastal ecosystems, with high influence of anthropogenic pressures and thus be vulnerable to exposure to various types of contaminants. The cuttlefish is a species of great importance to the local economy of Aveiro, considering the global data of catches of this species in the Ria de Aveiro. However, studies on this species in Ria de Aveiro are scarce, so the present study aims to fill this information gap about the cuttlefish in the Ria de Aveiro. The cuttlefish enters Ria de Aveiro in the spring and summer to reproduce, returning to deeper waters in the winter. In terms of abundance, the eastern and center regions of the lagoon, closer to the sea, showed the highest values of abundance, while the northern and southern regions of the main channel had the lowest abundance. This fact may be related to abiotic factors, as well as depth, salinity and temperature. In the most southern point of the Ria de Aveiro (Areão) no cuttlefish was caught. This site had the lowest values of salinity and depth. The cuttlefish has an allometric the females being heavier than males to mantle lengths greater than 82.4 mm. Males reach sexual maturity first than females. In Ria de Aveiro in a generation of parents was found. The cuttlefish, presents itself as opportunistic predators, consuming a wide variety of prey from different taxa. The diet was similar in different sampling locations observing significant differences for the seasons. S. officinalis was captured at 10 sites in the Ria de Aveiro with different anthropogenic sources of contamination. Thus, levels of metals analyzed were similar at all sampling sites, with the exception of a restricted area, Laranjo, which showed higher values. The cuttlefish has the ability to accumulate metals in your body. The levels of Fe, Zn, Cu, Cd, Pb and Hg found in the digestive gland and mantle reflect a differential accumulation of metals in the tissues. This accumulation is related to the type and function of tissue analyzed and the type of metal analysis (essential and non-essential). The metal concentrations in the digestive gland are higher than in the mantle, with the exception of mercury. This may be due to the high affinity of the mantle for the incorporation of methylmercury (MeHg), the most abundant form of mercury. The accumulation of metals can vary over a lifetime, depending on the metal. The concentrations of Zn, Cd and Hg increases throughout life, while Pb decreases and essential metals such as Fe and Cu remain constant. The data collected suggest that the cuttlefish (Sepia officinalis) can be used as a bioindicator of environmental contamination for some metals.