7 resultados para Helmuth Plessner
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Esta tese considera a transmissão de conceitos matemáticos para Portugal no século XIX, particularmente no campo dos Integrais Elípticos e das Funções Elípticas, tal como foi realizado no trabalho de António Zeferino Cândido. Depois de uma introdução histórica geral ao assunto no capítulo 1, o capítulo 2 estuda a vida de António Zeferino Cândido da Piedade. Ele foi, talvez, o primeiro matemático português a publicar uma tese sobre este assunto. A parte principal, isto é, o capítulo 3, é dedicada à análise do seu trabalho “Integraes e Funcções Ellipticas”. Mostra detalhes da sua abordagem baseada, não só, no livro dos autores Franceses Briot e Bouquet, mas também do autor alemão Schloemilch, o que reflecte as mudanças que ocorreram naquela época na liderança matemática na Europa.
Resumo:
Nesta dissertação é apresentada uma abordagem a polinómios de Appell multidimensionais dando-se especial relevância à estrutura da sua função geradora. Esta estrutura, conjugada com uma escolha adequada de ordenação dos monómios que figuram nos polinómios, confere um carácter unificador à abordagem e possibilita uma representação matricial de polinómios de Appell por meio de matrizes particionadas em blocos. Tais matrizes são construídas a partir de uma matriz de estrutura simples, designada matriz de criação, subdiagonal e cujas entradas não nulas são os sucessivos números naturais. A exponencial desta matriz é a conhecida matriz de Pascal, triangular inferior, onde figuram os números binomiais que fazem parte integrante dos coeficientes dos polinómios de Appell. Finalmente, aplica-se a abordagem apresentada a polinómios de Appell definidos no contexto da Análise de Clifford.
Resumo:
Esta dissertação descreve o processo de integração dos matemáticos portugueses na comunidade matemática internacional no final do século XIX e início do século XX, focando-se na vida e obra do matemático Francisco Gomes Teixeira (1851-1933). Tenciona a ser mais um contributo para o reconhecimento nacional e internacional do matemático Gomes Teixeira analisando a sua obra como matemático e organizador científico em Portugal através de fontes, parcialmente ainda não conhecidas. Para esse efeito analisou-se a evolução histórica que ocorreu no mundo científico daquela época, em particular a formação da comunidade matemática através de iniciativas individuais ou coletivas, muitas vezes acompanhadas pela fundação de revistas e elaboração de manuais que contribuíram para a internacionalização e, de certa forma, para uma estandardização do estudo universitário básico. Em particular foi estudada a situação em Portugal, onde o papel de liderança foi assumido por Gomes Teixeira. Mostra-se como Gomes Teixeira, graças ao seu trabalho, ao seu talento como matemático e à sua atividade como organizador académico, conseguiu reduzir significativamente o isolamento científico de Portugal na área da matemática. Estudou-se em extensão a fundação de revistas científicas em diferentes países, acompanhando a sua evolução desde de revistas nacionais até revistas internacionais. Focando-nos no Jornal de Sciencias Matemáticas e Astronómicas, fundado em 1877 por Gomes Teixeira (mais tarde conhecido internacionalmente como Teixeira’s Journal), acompanhamos detalhadamente a sua transformação de uma revista nacional numa revista internacional, sendo esta transformação comum naquela época à maioria de revistas científicas importantes de outros países como, por exemplo, no caso do Jornal de Crelle, do Jornal de Liouville, ou outros. Estudou-se igualmente o reconhecimento a nível internacional, através de referências estrangeiras, da abordagem original de Gomes Teixeira à Análise Infinitesimal patente nos seus manuais. O interesse de Gomes Teixeira pela teoria das funções analíticas e pelos seus diferentes desenvolvimentos em série manifestou-se no grande número de artigos publicados sobre este tema e encontrou reconhecimento justo pela designação de um teorema que completa resultados de Lagrange e de Laurent como Teorema de Teixeira. Na sua análise do mérito científico de Gomes Teixeira esta dissertação restringiu-se conscientemente nesta área da Análise Matemática, uma vez que um estudo abrangente de toda a obra ultrapassasse o nosso objetivo. Foi também discutido o intenso intercâmbio científico levado a cabo por Gomes Teixeira através de correspondência e troca de publicações ou permuta de revistas com os matemáticos de diferentes países. Esta análise permitiu verificar um aumento da popularidade dos matemáticos portugueses através do incremento do número de artigos publicados no estrangeiro durante quase 30 anos. Uma fonte imprescindível nesta análise foi o Jahrbuch über die Fortschritte der Mathematik, cujas referências (em geral na língua alemã e por isso até agora quase nunca usadas na literatura Portuguesa) documentaram as publicações em quase todas as revistas matemáticas durante os anos da sua existência entre 1868 e 1942. Descreve-se a colaboração de Gomes Teixeira com diferentes organizações internacionais e documenta-se o apreço internacional por parte do mundo académico. Novos documentos traçam o processo de eleição como membro da Academia das Ciências Alemã Leopoldina, sob proposta de Georg Cantor e outros matemáticos alemães. Finalmente, incluí-se uma breve descrição das atividades levadas a cabo na Rússia, em Espanha e na Grécia em prol do processo de internacionalização da comunidade matemática europeia tendo em vista uma melhor contextualização do contributo de Gomes Teixeira para a integração de Portugal neste processo.
Resumo:
This thesis studies properties and applications of different generalized Appell polynomials in the framework of Clifford analysis. As an example of 3D-quasi-conformal mappings realized by generalized Appell polynomials, an analogue of the complex Joukowski transformation of order two is introduced. The consideration of a Pascal n-simplex with hypercomplex entries allows stressing the combinatorial relevance of hypercomplex Appell polynomials. The concept of totally regular variables and its relation to generalized Appell polynomials leads to the construction of new bases for the space of homogeneous holomorphic polynomials whose elements are all isomorphic to the integer powers of the complex variable. For this reason, such polynomials are called pseudo-complex powers (PCP). Different variants of them are subject of a detailed investigation. Special attention is paid to the numerical aspects of PCP. An efficient algorithm based on complex arithmetic is proposed for their implementation. In this context a brief survey on numerical methods for inverting Vandermonde matrices is presented and a modified algorithm is proposed which illustrates advantages of a special type of PCP. Finally, combinatorial applications of generalized Appell polynomials are emphasized. The explicit expression of the coefficients of a particular type of Appell polynomials and their relation to a Pascal simplex with hypercomplex entries are derived. The comparison of two types of 3D Appell polynomials leads to the detection of new trigonometric summation formulas and combinatorial identities of Riordan-Sofo type characterized by their expression in terms of central binomial coefficients.
Resumo:
Esta dissertação tem como objetivo a divulgação de temas e de algoritmos presentes nos tratados de aritmética prática do século XVI. Pretendemos delinear a atuação dos seus autores face aos desafios do mundo mercantil envolvente. Sendo o nosso «ator principal» Ruy Mendes, esta escolha deve-se a dois motivos: entre os três autores é aquele que tem sido menos mencionado e estudado; os interesses de Mendes parecem-nos mais distantes do mundo mercantil. Assim, no desenrolar deste estudo apresentaremos a Prática do ponto de vista da estrutura e organização, contemplando os seguintes pontos: uma Matemática básica; a Matemática pour elle Même; uma Matemática para o comércio. Neste último ponto incluiremos as regras locais do comércio português: a regra de quarto e vintena e a regra da conta de Flandres. Para cada assunto é realizado um estudo comparativo com os dois tratados da mesma época: o Tratado da Pratica d'Arismetica de Gaspar Nicolas e o Tratado da Arte d'Arismetica de Bento Fernandes. Apesar de se tratar de autores já referidos por alguns historiadores, consideramos que não foram ainda estudados do ponto de vista do interesse intrínseco presente no conhecimento histórico da Matemática, bem como na sua atuação relativamente à divulgação do cálculo aritmético e do seu contributo para o desenvolvimento da Matemática através de problemas práticos.
Resumo:
In the recent past one of the main concern of research in the field of Hypercomplex Function Theory in Clifford Algebras was the development of a variety of new tools for a deeper understanding about its true elementary roots in the Function Theory of one Complex Variable. Therefore the study of the space of monogenic (Clifford holomorphic) functions by its stratification via homogeneous monogenic polynomials is a useful tool. In this paper we consider the structure of those polynomials of four real variables with binomial expansion. This allows a complete characterization of sequences of 4D generalized monogenic Appell polynomials by three different types of polynomials. A particularly important case is that of monogenic polynomials which are simply isomorphic to the integer powers of one complex variable and therefore also called pseudo-complex powers.
Resumo:
A presente publicação congrega artigos escolhidos que pretendem contribuir para uma perspectiva sobre ciência e tecnologia, na sequência do 4º Encontro Nacional de História das Ciências e da Tecnologia. A organização do presente volume integra, na abertura, a reflexão de Maria de Fátima Nunes sobre práticas científicas e culturais em congressos internacionais e o contributo de Leoncio López-Ocón relativo ao património de institutos e liceus históricos como fonte para os historiadores da ciência. Seguem-se quatro secções que congregam vários contributos, agrupados em Actores e Práticas Científicas; Ciência, Poder e Regulamentação; Ciência, Educação e Instituições e ainda Tecnologia e Sociedade. (...)