2 resultados para Heat-transfer

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ria deAveiro is a very complex shallow water coastal lagoon located on the northwest of Portugal. Important issues would be left unanswered without a good understanding of hydrodynamic and transport processes occurring in the lagoon. Calibration and validation of hydrodynamic, salt and heat transport models for Ria de Aveiro lagoon are presented. The calibration of the hydrodynamic model was performed adjusting the bottom friction coefficient, through the comparison between measured and predicted time series of sea surface elevation for 22 stations. Harmonic analysis was performed in order to evaluate the model's accuracy. To validate the hydrodynamic model measured and predicted SSE values were compared for 11 stations, as well as main flow direction velocities for 10 stations. The salt and heat transport models were calibrated comparing measured and predicted time series of salinity and water temperature for 7 stations, and the RMS of the difference between the series was determined. These models were validated comparing the model results with an independent field data set. The hydrodynamic and the salt and heat transport models for Ria de Aveiro were successfully calibrated and validated. They reproduce accurately the barotropic flows and can therefore adequately represent the salt and heat transport and the heat transfer processes occurring in Ria deAveiro.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A desmaterialização da economia é um dos caminhos para a promoção do desenvolvimento sustentável na medida em que elimina ou reduz a utilização de recursos naturais, fazendo mais com menos. A intensificação dos processos tecnológicos é uma forma de desmaterializar a economia. Sistemas mais compactos e mais eficientes consomem menos recursos. No caso concreto dos sistemas envolvendo processo de troca de calor, a intensificação resulta na redução da área de permuta e da quantidade de fluido de trabalho, o que para além de outra vantagem que possa apresentar decorrentes da miniaturização, é um contributo inegável para a sustentabilidade da sociedade através do desenvolvimento científico e tecnológico. O desenvolvimento de nanofluidos surge no sentido de dar resposta a estes tipo de desafios da sociedade moderna, contribuindo para a inovação de produtos e sistemas, dando resposta a problemas colocados ao nível das ciências de base. A literatura é unânime na identificação do seu potencial como fluidos de permuta, dada a sua elevada condutividade, no entanto a falta de rigor subjacente às técnicas de preparação dos mesmos, assim como de um conhecimento sistemático das suas propriedades físicas suportado por modelos físico-matemáticos devidamente validados levam a que a operacionalização industrial esteja longe de ser concretizável. Neste trabalho, estudou-se de forma sistemática a condutividade térmica de nanofluidos de base aquosa aditivados com nanotubos de carbono, tendo em vista a identificação dos mecanismos físicos responsáveis pela condução de calor no fluido e o desenvolvimento de um modelo geral que permita com segurança determinar esta propriedade com o rigor requerido ao nível da engenharia. Para o efeito apresentam-se métodos para uma preparação rigorosa e reprodutível deste tipo de nanofluido assim como das metodologias consideradas mais importantes para a aferição da sua estabilidade, assegurando deste modo o rigor da técnica da sua produção. A estabilidade coloidal é estabelecida de forma rigorosa tendo em conta parâmetros quantificáveis como a ausência de aglomeração, a separação de fases e a deterioração da morfologia das nanopartículas. Uma vez assegurado o método de preparação dos nanofluídos, realizou-se uma análise paramétrica conducente a uma base de dados obtidos experimentalmente que inclui a visão central e globalizante da influência relativa dos diferentes fatores de controlo com impacto nas propriedades termofísicas. De entre as propriedades termofísicas, este estudo deu particular ênfase à condutividade térmica, sendo os fatores de controlo selecionados os seguintes: fluido base, temperatura, tamanho da partícula e concentração de nanopartículas. Experimentalmente, verificou-se que de entre os fatores de controlo estudados, os que maior influência detêm sobre a condutividade térmica do nanofluido, são o tamanho e concentração das nanopartículas. Com a segurança conferida por uma base de dados sólida e com o conhecimento acerca da contribuição relativa de cada fator de controlo no processo de transferência de calor, desenvolveu-se e validou-se um modelo físico-matemático com um caracter generalista, que permitirá determinar com segurança a condutividade térmica de nanofluidos.