2 resultados para Graph matching

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper begins with a new characterization of (k,τ)(k,τ)-regular sets. Then, using this result as well as the theory of star complements, we derive a simplex-like algorithm for determining whether or not a graph contains a (0,τ)(0,τ)-regular set. When τ=1τ=1, this algorithm can be applied to solve the efficient dominating set problem which is known to be NP-complete. If −1−1 is not an eigenvalue of the adjacency matrix of the graph, this particular algorithm runs in polynomial time. However, although it does not work in polynomial time in general, we report on its successful application to a vast set of randomly generated graphs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A weighted Bethe graph $B$ is obtained from a weighted generalized Bethe tree by identifying each set of children with the vertices of a graph belonging to a family $F$ of graphs. The operation of identifying the root vertex of each of $r$ weighted Bethe graphs to the vertices of a connected graph $\mathcal{R}$ of order $r$ is introduced as the $\mathcal{R}$-concatenation of a family of $r$ weighted Bethe graphs. It is shown that the Laplacian eigenvalues (when $F$ has arbitrary graphs) as well as the signless Laplacian and adjacency eigenvalues (when the graphs in $F$ are all regular) of the $\mathcal{R}$-concatenation of a family of weighted Bethe graphs can be computed (in a unified way) using the stable and low computational cost methods available for the determination of the eigenvalues of symmetric tridiagonal matrices. Unlike the previous results already obtained on this topic, the more general context of families of distinct weighted Bethe graphs is herein considered.