3 resultados para Graph DBMS, BenchMarking, OLAP, NoSQL
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
To store, update and retrieve data from database management systems (DBMS), software architects use tools, like call-level interfaces (CLI), which provide standard functionalities to interact with DBMS. However, the emerging of NoSQL paradigm, and particularly new NoSQL DBMS providers, lead to situations where some of the standard functionalities provided by CLI are not supported, very often due to their distance from the relational model or due to design constraints. As such, when a system architect needs to evolve, namely from a relational DBMS to a NoSQL DBMS, he must overcome the difficulties conveyed by the features not provided by NoSQL DBMS. Choosing the wrong NoSQL DBMS risks major issues with components requesting non-supported features. This paper focuses on how to deploy features that are not so commonly supported by NoSQL DBMS (like Stored Procedures, Transactions, Save Points and interactions with local memory structures) by implementing them in standard CLI.
Resumo:
The main purpose of this study is to present an alternative benchmarking approach that can be used by national regulators of utilities. It is widely known that the lack of sizeable data sets limits the choice of the benchmarking method and the specification of the model to set price controls within incentive-based regulation. Ill-posed frontier models are the problem that some national regulators have been facing. Maximum entropy estimators are useful in the estimation of such ill-posed models, in particular in models exhibiting small sample sizes, collinearity and non-normal errors, as well as in models where the number of parameters to be estimated exceeds the number of observations available. The empirical study involves a sample data used by the Portuguese regulator of the electricity sector to set the parameters for the electricity distribution companies in the regulatory period of 2012-2014. DEA and maximum entropy methods are applied and the efficiency results are compared.
Resumo:
A weighted Bethe graph $B$ is obtained from a weighted generalized Bethe tree by identifying each set of children with the vertices of a graph belonging to a family $F$ of graphs. The operation of identifying the root vertex of each of $r$ weighted Bethe graphs to the vertices of a connected graph $\mathcal{R}$ of order $r$ is introduced as the $\mathcal{R}$-concatenation of a family of $r$ weighted Bethe graphs. It is shown that the Laplacian eigenvalues (when $F$ has arbitrary graphs) as well as the signless Laplacian and adjacency eigenvalues (when the graphs in $F$ are all regular) of the $\mathcal{R}$-concatenation of a family of weighted Bethe graphs can be computed (in a unified way) using the stable and low computational cost methods available for the determination of the eigenvalues of symmetric tridiagonal matrices. Unlike the previous results already obtained on this topic, the more general context of families of distinct weighted Bethe graphs is herein considered.