5 resultados para Grafeno

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os cimentos ósseos à base de PMMA para aplicações em artroplastia da anca apresentam como grande limitação o facto do seu constituinte principal ser um elemento bioinerte o que leva à falta de integração entre as interfaces cimento ósseo/tecido ósseo, comprometendo assim o desempenho mecânico da prótese ortopédica ao longo do tempo. Esta dissertação tem como objetivo principal a preparação de novas formulações de cimentos ósseos com a capacidade de estabelecer interações com os tecidos vivos circundantes. De modo a melhorar a bioatividade do sistema e facilitar a sua osseointegração, os cimentos ósseos comerciais foram reforçados com cargas significativas de HA. No entanto o recurso a elevadas cargas de HA (~60% m/m) no cimento ósseo promove debilidades do ponto de vista estrutural, levando a uma baixa resistência mecânica do material final. No sentido de ultrapassar esta limitação, foram inseridas nanoestruturas de carbono (GO ou CNTs) em baixas percentagens na matriz polimérica por forma a maximizar a sua performance mecânica através da perfeita integração de todos os componentes. A primeira fase deste trabalho consistiu no desenvolvimento de metodologias que permitissem a síntese de GO através da exfoliação química da grafite em solução aquosa. Os resultados obtidos demonstraram a obtenção de folhas de GO em larga escala e com número de camadas uniforme. A funcionalização orgânica superficial via ATRP do GO obtido, com cadeias de PMMA possibilitou o desenvolvimento de novos materiais nanocompósitos, no entanto alguns fatores de natureza tecnológica inviabilizaram o seu uso como agente de reforço na matriz idealizada. O desenvolvimento de novas formulações de cimentos ósseos consistiu numa matriz de PMMA/HA (1:2 (m/m)) reforçada com pequenas percentagens de GO ou CNTs (0,01, 0,1, 0,5 e 1,0% m/m). A síntese destes materiais nanocompósitos resultou da combinação de diversas técnicas: ultrassons, granulação por congelamento e liofilização. A análise estrutural dos nanocompósitos obtidos demonstrou a eficácia da metodologia desenvolvida na homogeneização de todos os elementos do sistema. Os estudos desenvolvidos após a conformação e caracterização estrutural dos novos materiais nanocompósitos permitiram verificar que as nanoestruturas de carbono apresentavam efeitos adversos na polimerização via radicalar do PMMA. A análise da fração orgânica permitiu verificar a presença de espécies oligoméricas o que reduziu significativamente o comportamento mecânico dos nanocompósitos. Através do estudo do aumento da concentração das espécies radicalares iniciais foi possível suplantar este problema e tirar o máximo rendimento dos agentes de reforço, tendo-se destacado os nanocompósitos reforçados com GO. A validação do ponto de vista mecânico das novas formulações de cimentos ósseos recaiu sobre o procedimento descrito na norma europeia ISO 5833 de 2002 – Implantes para cirurgia – cimentos acrílicos, tendo sido realizados os testes de compressão e de flexão. A avaliação biológica do comportamento dos cimentos ósseos assentou em duas abordagens complementares: estudos de mineralização em SBF e estudos de biocompatibilidade em meios celulares. Após a incubação das amostras em SBF ficou demonstrada a excelente capacidade para promoverem a integração de uma camada apatítica. Através de estudos celulares com Fibroblastos L929 e Osteoblastos Saos-2, nos quais foram avaliados a proliferação celular, viabilidade celular, espécies reativas de oxigénio, apoptose e morfologia celular, foi possível verificar bons níveis de biocompatibilidade para os materiais devolvidos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation describes the synthesis and characterization of different phthalocyanine (Pc) derivatives, as well as some porphyrins (Pors), for supramolecular interaction with different carbon nanostructures, to evaluate their potential application in electronic nanodevices. Likewise, it is also reported the preparation and biological evaluation of interesting phthalocyanine conjugates for cancer photodynamic therapy (PDT) and microorganisms photodynamic inactivation (PDI). The phthalonitrile precursors were prepared from commercial phthalonitriles by nucleophilic substitution of -NO2, -Cl, or -F groups, present in the phthalonitrile core, by thiol or pyridyl units. After the synthesis of these phthalonitriles, the corresponding Pcs were prepared by ciclotetramerization using a metallic salt as template at high temperatures. A second strategy involved the postfunctionalization of hexadecafluorophthalocyaninato zinc(II) through the adequate substituents of mercaptopyridine or cyclodextrin units on the macrocycle periphery. The different compounds were structurally characterized by diverse spectroscopic techniques, namely 1H, 13C and 19F nuclear magnetic resonance spectroscopies (attending the elemental composition of each structure); absorption and emission spectroscopy, and mass spectrometry. For the specific photophysical studies were also used electrochemical characterization, femtosecond and raman spectroscopy, transmission electron and atomic force microscopy. It was highlighted the noncovalent derivatisation of carbon nanostructures, mainly single wall carbon nanotubes (SWNT) and graphene nanosheets with the prepared Pc conjugates to study the photophysical properties of these supramolecular nanoassemblies. Also, from pyridyl-Pors and ruthenium phthalocyanines (RuPcs) were performed Por-RuPcs arrays via coordination chemistry. The results obtained of the novel supramolecular assemblies showed interesting electron donor-acceptor interactions and might be considered attractive candidates for nanotechnological devices. On the other hand, the amphiphilic phthalocyanine-cyclodextrin (Pc-CD) conjugates were tested in biological trials to assess their ability to inhibit UMUC- 3 human bladder cancer cells. The results obtained demonstrated that these photoactive conjugates are highly phototoxic against human bladder cancer cells and could be applied as promising PDT drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work aimed to explore the potential of new nanocomposites based on carbon nanostructures and metal nanoparticles for the detection of biomolecules through surface enhanced Raman scattering (SERS). In a first step, polyvinyl alcohol composites were prepared incorporating silver nanoparticles by two different reduction procedures. At first without introduction of carbon nanostructures. These composites showed good results for the SERS identification of nucleic acids. Next, the synthesis and characterization of graphene oxide was studied to be used in the preparation of silver and gold nanocomposites. The reduction of this nanomaterial with different chemical agents was explored, since its reduction degree may be a determinant factor for the application envisaged (biomolecules interaction). The preparation of the nanocomposites with silver and gold was performed with different reducing agents. The SERS activity of these new nanocomposites was then explored in the presence of different analytes, varying the experimental conditions for Raman spectra acquisition. It was interesting to verify that the silver containing nanocomposites presented the particularity to intensify the graphene D and G bands. It is also important to highlight that a new eco-friendly reducing agent was tested for the synthesis of the graphene oxide composites, an Eucalyptus Globulus extract. Other variable introduced was the preparation of gold nanostars synthesized with hydroxylamine in the presence of graphene oxide, which allowed the preparation of a new nanocomposite with SERS potential. Fibrous membranes were also prepared by electrospinning with the aim to prepare SERS supports with adequate topography and porosity for the formation of nanoparticles agglomerates for the creation of the so-called hot-spots and also to allow the penetration of the analyte molecules. The polymers polyvinyl alcohol and polyacrylonitrile were selected for electrospinning. Using this technique, electrospun mantles with silver and gold nanoparticles and nanocomposites were prepared. Several variables were studied, such as the introduction of the nano-fillers during the electrospinning process, later deposition of the nano-fillers on the simple electrospun polymeric fibres and surface functionalization of the simple polymeric membranes to link the nano-fillers. At last, the potentialities of using carbon nanotubes forests, produced by chemical vapor deposition and coated with gold film by sputtering, as new SERS substrates were explored. It was found that the SERS detection of DNA bases and ADN itself is possible using these substrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is about the combination of functional ferroelectric oxides with Multiwall Carbon Nanotubes for microelectronic applications, as for example potential 3 Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Miniaturized electronics are ubiquitous now. The drive to downsize electronics has been spurred by needs of more performance into smaller packages at lower costs. But the trend of electronics miniaturization challenges board assembly materials, processes, and reliability. Semiconductor device and integrated circuit technology, coupled with its associated electronic packaging, forms the backbone of high-performance miniaturized electronic systems. However, as size decreases and functionalization increases in the modern electronics further size reduction is getting difficult; below a size limit the signal reliability and device performance deteriorate. Hence miniaturization of siliconbased electronics has limitations. On this background the Road Map for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, designated as More than Moore; being one of them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. CNTs with their unique performance and three dimensionality at the nano-scale have been regarded as promising elements for miniaturized electronics [2]. CNTs are tubular in geometry and possess a unique set of properties, including ballistic electron transportation and a huge current caring capacity, which make them of great interest for future microelectronics [2]. Indeed CNTs might have a key role in the miniaturization of Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Moving from a traditional two dimensional (2D) design (as is the case of thin films) to a 3D structure (based on a tridimensional arrangement of unidimensional structures) will result in the high reliability and sensing of the signals due to the large contribution from the bottom electrode. One way to achieve this 3D design is by using CNTs. Ferroelectrics (FE) are spontaneously polarized and can have high dielectric constants and interesting pyroelectric, piezoelectric, and electrooptic properties, being a key application of FE electronic memories. However, combining CNTs with FE functional oxides is challenging. It starts with materials compatibility, since crystallization temperature of FE and oxidation temperature of CNTs may overlap. In this case low temperature processing of FE is fundamental. Within this context in this work a systematic study on the fabrication of CNTs - FE structures using low cost low temperature methods was carried out. The FE under study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate (BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in presence of MWCNTs and interfaces between the CNTs/FE are addressed in this work. The ferroelectric response locally measured by Piezoresponse Force Microscopy (PFM) clearly evidenced that even at low processing temperatures FE on CNTs retain its ferroelectric nature. The work started by verifying the thermal decomposition behavior under different conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non isothermal conditions, but morphology changes were observed for isothermal conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy (TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 ºC with a minimum sublimation. The activation energy for the decomposition of MWCNTs in air was calculated to lie between 80 and 108 kJ/mol. These results are relevant for the fabrication of MWCNTs – FE structures. Indeed we demonstrate that PZT can be deposited by sol gel at low temperatures on MWCNTs. And particularly interesting we prove that MWCNTs decrease the temperature and time for formation of PZT by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised at 500 ºC for 1 h was proved by PFM. In the continuation of this work we developed a low cost methodology of coating MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as a proof of concept was BT. BT is a well-known lead free perovskite used in many microelectronic applications. However, synthesis by solid state reaction is typically performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT structures are ferroelectric and exhibit an electromechanical response (15 pm/V). These results have broad implications since this strategy can also be extended to other compounds of materials with high crystallization temperatures. In addition the coverage of MWCNTs with FE can be optimized, in this case with non covalent functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). MWCNTs were used as templates to grow, in this case single phase multiferroic BFO nanorods. This work shows that the use of nitric solvent results in severe damages of the MWCNTs layers that results in the early oxidation of the tubes during the annealing treatment. It was also observed that the use of nitric solvent results in the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) of the nitric solution. The opening of the caps and filling of the tubes occurs simultaneously during the refluxing step. Furthermore we verified that MWCNTs have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs during the annealing process causes an oxygen deficient atmosphere that restrains the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of the obtained BFO nano structures indicates that MWCNTs act as template to grow 1D structure of BFO. Magnetic measurements on these BFO nanostructures revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 K. We also exploited the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by PFM. A week ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe. Our systematic work is a significant step forward in the development of 3D memory cells; it clearly demonstrates that CNTs can be combined with FE oxides and can be used, for example, as the next 3D generation of FERAMs, not excluding however other different applications in microelectronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we study the Zeeman splitting effects in the parallel magnetic field versus temperature phase diagram of two-dimensional superconductors with one graphene-like band and the orbital effects of perpendicular magnetic fields in isotropic two-dimensional semi-metallic superconductors. We show that when parallel magnetic fields are applied to graphene and as the intraband interaction decreases to a critical value, the width of the metastability region present in the phase diagram decreases, vanishing completely at that critical value. In the case of two-band superconductors with one graphene-like band, a new critical interaction, associated primarily with the graphene-like band, is required in order for a second metastability region to be present in the phase diagram. For intermediate values of this interaction, a low-temperature first-order transition line bifurcates at an intermediate temperature into a first-order transition between superconducting phases and a second-order transition line between the normal and the superconducting states. In our study on the upper critical fields in generic semi-metallic superconductors, we find that the pair propagator decays faster than that of a superconductor with a metallic band. As result, the zero field band gap equation does not have solution for weak intraband interactions, meaning that there is a critical intraband interaction value in order for a superconducting phase to be present in semi-metallic superconductors. Finally, we show that the out-of-plane critical magnetic field versus temperature phase diagram displays a positive curvature, contrasting with the parabolic-like behaviour typical of metallic superconductors.