1 resultado para Government, Resistance to -- Book reviews

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Last-resort antibiotics are the final line of action for treating serious infections caused by multiresistant strains. Over the years the prevalence of resistant bacteria has been increasing. Natural environments are reservoirs of antibiotic resistance, highly influenced by human-driven activities. The importance of aquatic systems on the evolution of antibiotic resistance is highlighted from the assumption that clinically-relevant resistance genes have originated in strains ubiquitous in these environments. We hypothesize that: a) rivers are reservoirs and disseminators of antibiotic resistance; b) anthropogenic activities potentiate dissemination of resistance to last-resort antibiotics. Hence, the main goal of the work is to compare the last-resort antibiotics resistome, in polluted and unpolluted water. Rivers from the Vouga basin, exposed to different anthropogenic impacts, were sampled. Water quality parameters were determined to classify rivers as unpolluted or polluted. Two bacterial collections were established enclosing bacteria resistant to cefotaxime (3rd generation cephalosporin) and to imipenem (carbapenem). Each collection was characterized regarding: phylogenetic diversity, antibiotic susceptibility, resistance mechanisms and mobile genetic elements. The prevalence of cefotaxime- and imipenem-resistant bacteria was higher in polluted water. Results suggested an important role in the dissemination of antibiotic resistance for Enterobacteriaceae, Pseudomonas and Aeromonas. The occurrence of bacteria resistant to non-beta-lactams was higher among isolates from polluted water as also the number of multiresistant strains. Among strains resistant to cefotaxime, extended-spectrum beta-lactamase (ESBL) genes were detected (predominantly blaCTX-M-like) associated to mobile genetic elements previously described in clinical strains. ESBL-producers were often multiresistant as a result of co-selection mechanisms. Culture-independent methods showed clear differences between blaCTX-M-like sequences found in unpolluted water (similar to ancestral genes) and polluted water (sequences identical to those reported in clinical settings). Carbapenem resistance was mostly related to the presence of intrinsically resistant bacteria. Yet, relevant carbapenemase genes were detected as blaOXA-48-like in Shewanella spp. (the putative origin of these genes), and blaVIM-2 in Pseudomonas spp. isolated from polluted rivers. Culture-independent methods showed an higher than the previously reported diversity of blaOXA-48-like genes in rivers. Overall, clear differences between polluted and unpolluted systems were observed, regarding prevalence, phylogenetic diversity and susceptibility profiles of resistant bacteria and occurrence of clinically relevant antibiotic resistance genes, thus validating our hypotheses. In this way, rivers act as disseminators of resistance genes, and anthropogenic activities potentiate horizontal gene transfer and promote the constitution of genetic platforms that combine several resistance determinants, leading to multiresistance phenotypes that may persist even in the absence of antibiotics.