2 resultados para Galicia (Poland and Ukraine) - Biography
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
The sediments of the Galicia Interior Basin in NW Iberia Margin are of particular palaeoclimatic interest as they are located at the boundary where the climatic oscillations of the glacial interval were interrupted by extreme events such as Heinrich events. These events are well characterized in Northern North Atlantic areas, but little is known about their occurrence beyond the Ruddiman belt. This study presents a combined environmagnetic and geochemical approach to the provenance and characterization of distal ice-rafted detritus (IRD) that occurred during the last glacial period in core CI12PC3 from the Galicia Interior Basin. The last six Heinrich Layers were identified by their magneto-mineralogical and geochemical properties. Their Sr and Nd isotopic signatures indicated that the Laurentide Ice Sheet was the major source for HL1, HL2, HL4 and HL5. However, the European ice sheets also influenced the initial development stages of HL1, HL2, HL4. HL3, HL6 and partially HL1, HL2 and HL4 were influenced by more juvenile provinces, such as Iceland/Faroes sheets and/or by the Fram Strait/East Greenland nearby areas. Separate provenance analyses of the coarse and fine fractions in the studied Heinrich Layers also indicated that IRDs and glacial flour sources might not always be the same. Our results shed unequivocal evidence that Canadian-sourced distal IRD are preceded by European-sourced IRD, at least from the H4. In our view, LIS and EIS instabilities registered in the Iberian Margin respond to the same climate forcing at different velocities.
Resumo:
This paper discusses the advantages of using a combined environmagnetic and geochemical approach to the provenance and characterization of distal IRDs occurring during the Last Glacial Period in core CI12PC3 from the Galicia Interior Basin (GIB). Six Heinrich layers (HL1-6) have been identified in the area in base to the detection of distinct populations of exotic magnetic mineral assemblages alien to the local/regional sedimentation environment. Their extension has been determined by Ca/Sr and Si/Sr ratios and their provenance by 143Nd/144Nd and 87Sr/86Sr isotopic ratios and FORCs. The sedimentary expression of HL is characterized by the presence of distal Ice Rafted Detritus (IRD). Distal IRD magnetic signatures in the GIB consist of (i) an increase of one order of magnitude in the peak amplitude of magnetic susceptibility from background values, (ii) a general coarsening of the magnetic grain size in a mineral assemblage dominated by titano-magnetites, (iii) FORC distributions pushing towards the coarse MD or PSD component, and (iv) thermomagnetic curves depicting the occurrence of several magnetite phases. These four features are very different from the fine-grained biogenic magnetic assemblages characterized by the combination of lower MS and higher coercivity values that dominate the predominant mixtures of the non-interacting SSD and PSD components in the non-IRD influenced background sedimentation. Our results show that the last 70.000 yr of sedimentation in the GIB were controlled by the relative contribution of local detrital material derived from the Iberian Variscan Chain and IRD alien material from the iceberg melting during the Heinrich Events. They also show two main IRD provenance fields: Europe and Canada. And that the later is more important for for HL1, HL2, HL4 and HL5. FORCs analysis complemented the isotopic information and provided a very unique information, indicating that glacial flour may not always have the same provenance as IRD and that ice-melted derived suspended sediment has its own dynamics and may reach further and/or persists longer than IRD.