3 resultados para Field-based model

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fault tolerance allows a system to remain operational to some degree when some of its components fail. One of the most common fault tolerance mechanisms consists on logging the system state periodically, and recovering the system to a consistent state in the event of a failure. This paper describes a general fault tolerance logging-based mechanism, which can be layered over deterministic systems. Our proposal describes how a logging mechanism can recover the underlying system to a consistent state, even if an action or set of actions were interrupted mid-way, due to a server crash. We also propose different methods of storing the logging information, and describe how to deploy a fault tolerant master-slave cluster for information replication. We adapt our model to a previously proposed framework, which provided common relational features, like transactions with atomic, consistent, isolated and durable properties, to NoSQL database management systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The PhD project addresses the potential of using concentrating solar power (CSP) plants as a viable alternative energy producing system in Libya. Exergetic, energetic, economic and environmental analyses are carried out for a particular type of CSP plants. The study, although it aims a particular type of CSP plant – 50 MW parabolic trough-CSP plant, it is sufficiently general to be applied to other configurations. The novelty of the study, in addition to modeling and analyzing the selected configuration, lies in the use of a state-of-the-art exergetic analysis combined with the Life Cycle Assessment (LCA). The modeling and simulation of the plant is carried out in chapter three and they are conducted into two parts, namely: power cycle and solar field. The computer model developed for the analysis of the plant is based on algebraic equations describing the power cycle and the solar field. The model was solved using the Engineering Equation Solver (EES) software; and is designed to define the properties at each state point of the plant and then, sequentially, to determine energy, efficiency and irreversibility for each component. The developed model has the potential of using in the preliminary design of CSPs and, in particular, for the configuration of the solar field based on existing commercial plants. Moreover, it has the ability of analyzing the energetic, economic and environmental feasibility of using CSPs in different regions of the world, which is illustrated for the Libyan region in this study. The overall feasibility scenario is completed through an hourly analysis on an annual basis in chapter Four. This analysis allows the comparison of different systems and, eventually, a particular selection, and it includes both the economic and energetic components using the “greenius” software. The analysis also examined the impact of project financing and incentives on the cost of energy. The main technological finding of this analysis is higher performance and lower levelized cost of electricity (LCE) for Libya as compared to Southern Europe (Spain). Therefore, Libya has the potential of becoming attractive for the establishment of CSPs in its territory and, in this way, to facilitate the target of several European initiatives that aim to import electricity generated by renewable sources from North African and Middle East countries. The analysis is presented a brief review of the current cost of energy and the potential of reducing the cost from parabolic trough- CSP plant. Exergetic and environmental life cycle assessment analyses are conducted for the selected plant in chapter Five; the objectives are 1) to assess the environmental impact and cost, in terms of exergy of the life cycle of the plant; 2) to find out the points of weakness in terms of irreversibility of the process; and 3) to verify whether solar power plants can reduce environmental impact and the cost of electricity generation by comparing them with fossil fuel plants, in particular, Natural Gas Combined Cycle (NGCC) plant and oil thermal power plant. The analysis also targets a thermoeconomic analysis using the specific exergy costing (SPECO) method to evaluate the level of the cost caused by exergy destruction. The main technological findings are that the most important contribution impact lies with the solar field, which reports a value of 79%; and the materials with the vi highest impact are: steel (47%), molten salt (25%) and synthetic oil (21%). The “Human Health” damage category presents the highest impact (69%) followed by the “Resource” damage category (24%). In addition, the highest exergy demand is linked to the steel (47%); and there is a considerable exergetic demand related to the molten salt and synthetic oil with values of 25% and 19%, respectively. Finally, in the comparison with fossil fuel power plants (NGCC and Oil), the CSP plant presents the lowest environmental impact, while the worst environmental performance is reported to the oil power plant followed by NGCC plant. The solar field presents the largest value of cost rate, where the boiler is a component with the highest cost rate among the power cycle components. The thermal storage allows the CSP plants to overcome solar irradiation transients, to respond to electricity demand independent of weather conditions, and to extend electricity production beyond the availability of daylight. Numerical analysis of the thermal transient response of a thermocline storage tank is carried out for the charging phase. The system of equations describing the numerical model is solved by using time-implicit and space-backward finite differences and which encoded within the Matlab environment. The analysis presented the following findings: the predictions agree well with the experiments for the time evolution of the thermocline region, particularly for the regions away from the top-inlet. The deviations observed in the near-region of the inlet are most likely due to the high-level of turbulence in this region due to the localized level of mixing resulting; a simple analytical model to take into consideration this increased turbulence level was developed and it leads to some improvement of the predictions; this approach requires practically no additional computational effort and it relates the effective thermal diffusivity to the mean effective velocity of the fluid at each particular height of the system. Altogether the study indicates that the selected parabolic trough-CSP plant has the edge over alternative competing technologies for locations where DNI is high and where land usage is not an issue, such as the shoreline of Libya.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho é estudado o modelo de Kuramoto num grafo completo, em redes scale-free com uma distribuição de ligações P(q) ~ q-Y e na presença de campos aleatórios com magnitude constante e gaussiana. Para tal, foi considerado o método Ott-Antonsen e uma aproximação "annealed network". Num grafo completo, na presença de campos aleatórios gaussianos, e em redes scale-free com 2 < y < 5 na presença de ambos os campos aleatórios referidos, foram encontradas transições de fase contínuas. Considerando a presença de campos aleatórios com magnitude constante num grafo completo e em redes scale-free com y > 5, encontraram-se transições de fase contínua (h < √2) e descontínua (h > √2). Para uma rede SF com y = 3, foi observada uma transição de fase de ordem infinita. Os resultados do modelo de Kuramoto num grafo completo e na presença de campos aleatórios com magnitude constante foram comparados aos de simulações, tendo-se verificado uma boa concordância. Verifica-se que, independentemente da topologia de rede, a constante de acoplamento crítico aumenta com a magnitude do campo considerado. Na topologia de rede scale-free, concluiu-se que o valor do acoplamento crítico diminui à medida que valor de y diminui e que o grau de sincronização aumenta com o aumento do número médio das ligações na rede. A presença de campos aleatórios com magnitude gaussiana num grafo completo e numa rede scale-free com y > 2 não destrói a transição de fase contínua e não altera o comportamento crítico do modelo de Kuramoto.