3 resultados para Exome sequencing
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Type 2 diabetes is one of the most common metabolic disorders in the world. Globally, the prevalence of this disorder is predicted to increase, along with the risk of developing diabetic related complications. One of those complications is diabetic nephropathy, defined by a progressive increase in proteinuria and a gradual decline in renal function. Approximately 25% to 30% of type 2 diabetic individuals develop this complication. However, its underlying genetic mechanisms remain unclear. Thus, the aim of this study is to contribute to the discovery of the genetic mechanisms involved in the development and progression of diabetic nephropathy, through the identification of relevant genetic variants in Portuguese type 2 diabetic individuals. The exomes of 36 Portuguese type 2 diabetic individuals were sequenced on the Ion ProtonTM Sequencer. From those individuals, 19 did not present diabetic nephropathy, being included in the control group, while the 17 individuals that presented the diabetic complication formed the case group. A statistical analysis was then performed to identify candidate common genetic variants, as well as genes accumulating rare variants that could be associated with diabetic nephropathy. From the search for common variants in the study population, the statistically significant (p-value ≤ 0.05) variants rs1051303 and rs1131620 in the LTBP4 gene, rs660339 in UCP2, rs2589156 in RPTOR, rs2304483 in the SLC12A3 gene and rs10169718 present in ARPC2, were considered as the most biologically relevant to the pathogenesis of diabetic nephropathy. The variants rs1051303 and rs1131620, as well as the variants rs660339 and rs2589156 were associated with protective effects in the development of the complication, while rs2304483 and rs10169718 were considered risk variants, being present in individuals with diagnosed diabetic nephropathy. In the rare variants approach, the genes with statistical significance (p-value ≤ 0.05) found, the STAB1 gene, accumulating 9 rare variants, and the CUX1 gene, accumulating 2 rare variants, were identified as the most relevant. Both genes were considered protective, with the accumulated rare variants mainly present in the group without the renal complication. The present study provides an initial analysis of the genetic evidence associated with the development and progression of diabetic nephropathy, and the results obtained may contribute to a deeper understanding of the genetic mechanisms associated with this diabetic complication.
Resumo:
Familial amyloid polyneuropathy (FAP) or paramiloidosis is an autosomal dominant neurodegenerative disease with onset on adult age that is characterized by mutated protein deposition in the form of amyloid substance. FAP is due to a point alteration in the transthyretin (TTR) gene and until now more than 100 amyloidogenic mutations have been described in TTR gene. FAP shows a wide variation in age-at-onset (AO) (19-82 years, in Portuguese cases) and the V30M mutation often runs through several generation of asymptomatic carriers, before expressing in a proband, but the protective effect disappear in a single generation, with offspring of late-onset cases having early onset. V30M mutation does not explain alone the symptoms and AO variability of the disease observed in the same family. Our aim in this study was to identify genetic factors associated with AO variability and reduced penetrance which can have important clinical implications. To accomplish this we genotyped 230 individuals, using a directautomated sequencing approach in order to identify possible genetic modifiers within the TTR locus. After genotyping, we assessed a putative association of the SNPs found with AO and an intensive in silico analysis was performed in order to understand a possible regulation of gene expression. Although we did not find any significant association between SNPs and AO, we found very interesting and unreported results in the in silico analysis since we observed some alterations in the mechanism of splicing, transcription factors binding and miRNAs binding. All of these mechanisms when altered can lead to dysregulation of gene expression, which can have an impact in AO and phenotypic variability. These putative mechanisms of regulation of gene expression within the TTR gene could be used in the future as potential therapeutical targets, and could improve genetic counselling and follow-up of mutation carriers.
Resumo:
The non-standard decoding of the CUG codon in Candida cylindracea raises a number of questions about the evolutionary process of this organism and other species Candida clade for which the codon is ambiguous. In order to find some answers we studied the transcriptome of C. cylindracea, comparing its behavior with that of Saccharomyces cerevisiae (standard decoder) and Candida albicans (ambiguous decoder). The transcriptome characterization was performed using RNA-seq. This approach has several advantages over microarrays and its application is booming. TopHat and Cufflinks were the software used to build the protocol that allowed for gene quantification. About 95% of the reads were mapped on the genome. 3693 genes were analyzed, of which 1338 had a non-standard start codon (TTG/CTG) and the percentage of expressed genes was 99.4%. Most genes have intermediate levels of expression, some have little or no expression and a minority is highly expressed. The distribution profile of the CUG between the three species is different, but it can be significantly associated to gene expression levels: genes with fewer CUGs are the most highly expressed. However, CUG content is not related to the conservation level: more and less conserved genes have, on average, an equal number of CUGs. The most conserved genes are the most expressed. The lipase genes corroborate the results obtained for most genes of C. cylindracea since they are very rich in CUGs and nothing conserved. The reduced amount of CUG codons that was observed in highly expressed genes may be due, possibly, to an insufficient number of tRNA genes to cope with more CUGs without compromising translational efficiency. From the enrichment analysis, it was confirmed that the most conserved genes are associated with basic functions such as translation, pathogenesis and metabolism. From this set, genes with more or less CUGs seem to have different functions. The key issues on the evolutionary phenomenon remain unclear. However, the results are consistent with previous observations and shows a variety of conclusions that in future analyzes should be taken into consideration, since it was the first time that such a study was conducted.