4 resultados para Exact constraint
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Esta dissertação estuda essencialmente dois problemas: (A) uma classe de equações unidimensionais de reacção-difusão-convecção em meios não uniformes (dependentes do espaço), e (B) um problema elíptico não-linear e paramétrico ligado a fenómenos de capilaridade. A Análise de Perturbação Singular e a dinâmica de Hamilton-Jacobi são utilizadas na obtenção de expressões assimptóticas para a solução (com comportamento de frente) e para a sua velocidade de propagação. Os seguintes três métodos de decomposição, Adomian Decomposition Method (ADM), Decomposition Method based on Infinite Products (DIP), e New Iterative Method (NIM), são apresentados e brevemente comparados. Adicionalmente, condições suficientes para a convergência da solução em série, obtida pelo ADM, e uma aplicação a um problema da Telecomunicações por Fibras Ópticas, envolvendo EDOs não-lineares designadas equações de Raman, são discutidas. Um ponto de vista mais abrangente que unifica os métodos de decomposição referidos é também apresentado. Para subclasses desta EDP são obtidas soluções numa forma explícita, para diferentes tipos de dados e usando uma variante do método de simetrias de Bluman-Cole. Usando Teoria de Pontos Críticos (o teorema usualmente designado mountain pass) e técnicas de truncatura, prova-se a existência de duas soluções não triviais (uma positiva e uma negativa) para o problema elíptico não-linear e paramétrico (B). A existência de uma terceira solução não trivial é demonstrada usando Grupos Críticos e Teoria de Morse.
Resumo:
Os problemas de visibilidade têm diversas aplicações a situações reais. Entre os mais conhecidos, e exaustivamente estudados, estão os que envolvem os conceitos de vigilância e ocultação em estruturas geométricas (problemas de vigilância e ocultação). Neste trabalho são estudados problemas de visibilidade em estruturas geométricas conhecidas como polígonos, uma vez que estes podem representar, de forma apropriada, muitos dos objectos reais e são de fácil manipulação computacional. O objectivo dos problemas de vigilância é a determinação do número mínimo de posições para a colocação de dispositivos num dado polígono, de modo a que estes dispositivos consigam “ver” a totalidade do polígono. Por outro lado, o objectivo dos problemas de ocultação é a determinação do número máximo de posições num dado polígono, de modo a que quaisquer duas posições não se consigam “ver”. Infelizmente, a maior parte dos problemas de visibilidade em polígonos são NP-difíceis, o que dá origem a duas linhas de investigação: o desenvolvimento de algoritmos que estabelecem soluções aproximadas e a determinação de soluções exactas para classes especiais de polígonos. Atendendo a estas duas linhas de investigação, o trabalho é dividido em duas partes. Na primeira parte são propostos algoritmos aproximados, baseados essencialmente em metaheurísticas e metaheurísticas híbridas, para resolver alguns problemas de visibilidade, tanto em polígonos arbitrários como ortogonais. Os problemas estudados são os seguintes: “Maximum Hidden Vertex Set problem”, “Minimum Vertex Guard Set problem”, “Minimum Vertex Floodlight Set problem” e “Minimum Vertex k-Modem Set problem”. São também desenvolvidos métodos que permitem determinar a razão de aproximação dos algoritmos propostos. Para cada problema são implementados os algoritmos apresentados e é realizado um estudo estatístico para estabelecer qual o algoritmo que obtém as melhores soluções num tempo razoável. Este estudo permite concluir que as metaheurísticas híbridas são, em geral, as melhores estratégias para resolver os problemas de visibilidade estudados. Na segunda parte desta dissertação são abordados os problemas “Minimum Vertex Guard Set”, “Maximum Hidden Set” e “Maximum Hidden Vertex Set”, onde são identificadas e estudadas algumas classes de polígonos para as quais são determinadas soluções exactas e/ou limites combinatórios.
Resumo:
The work presented in this Ph.D thesis was developed in the context of complex network theory, from a statistical physics standpoint. We examine two distinct problems in this research field, taking a special interest in their respective critical properties. In both cases, the emergence of criticality is driven by a local optimization dynamics. Firstly, a recently introduced class of percolation problems that attracted a significant amount of attention from the scientific community, and was quickly followed up by an abundance of other works. Percolation transitions were believed to be continuous, until, recently, an 'explosive' percolation problem was reported to undergo a discontinuous transition, in [93]. The system's evolution is driven by a metropolis-like algorithm, apparently producing a discontinuous jump on the giant component's size at the percolation threshold. This finding was subsequently supported by number of other experimental studies [96, 97, 98, 99, 100, 101]. However, in [1] we have proved that the explosive percolation transition is actually continuous. The discontinuity which was observed in the evolution of the giant component's relative size is explained by the unusual smallness of the corresponding critical exponent, combined with the finiteness of the systems considered in experiments. Therefore, the size of the jump vanishes as the system's size goes to infinity. Additionally, we provide the complete theoretical description of the critical properties for a generalized version of the explosive percolation model [2], as well as a method [3] for a precise calculation of percolation's critical properties from numerical data (useful when exact results are not available). Secondly, we study a network flow optimization model, where the dynamics consists of consecutive mergings and splittings of currents flowing in the network. The current conservation constraint does not impose any particular criterion for the split of current among channels outgoing nodes, allowing us to introduce an asymmetrical rule, observed in several real systems. We solved analytically the dynamic equations describing this model in the high and low current regimes. The solutions found are compared with numerical results, for the two regimes, showing an excellent agreement. Surprisingly, in the low current regime, this model exhibits some features usually associated with continuous phase transitions.
Resumo:
Short sea shipping has several advantages over other means of transportation, recognized by EU members. The maritime transportation could be dealt like a combination of two well-known problems: the container stowage problem and routing planning problem. The integration of these two well-known problems results in a new problem CSSRP (Container stowage and ship routing problem) that is also an hard combinatorial optimization problem. The aim of this work is to solve the CSSRP using a mixed integer programming model. It is proved that regardless the complexity of this problem, optimal solutions could be achieved in a reduced computational time. For testing the mathematical model some problems based on real data were generated and a sensibility analysis was performed.