6 resultados para Evolução molecular - Elementos transponíveis
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
As proteínas existentes nas células são produzidas pelo mecanismo de tradução do mRNA, no qual a informação genética contida nos genes é descodificada em cadeias polipeptídicas. O código genético, que define as regras de descodificação do genoma, minimiza os erros de tradução do mRNA, garantindo a síntese de proteínas com elevada fidelidade. Esta é essencial para a estabilidade do proteoma e para a manutenção e funcionamento dos processos celulares. Em condições fisiológicas normais, os erros da tradução do mRNA ocorrem com frequências que variam de 10-3 a 10-5 erros por codão descodificado. Situações que aumentam este erro basal geralmente estão associadas ao envelhecimento, stresse e a doenças; no entanto, em certos organismos o código genético é traduzido naturalmente com elevado erro, indicando que a síntese de proteínas aberrantes pode de algum modo ser vantajosa. A fim de estudar a resposta celular aos erros de tradução do mRNA, construímos leveduras que incorporam serina no proteoma em resposta a um codão de leucina, usando a expressão constitutiva de um tRNASer mutante. Este fenómeno genético artificial provocou uma forte diminuição da esporulação, da viabilidade e da eficiência de mating, afectando imensamente a reprodução sexual da levedura. Observou-se também uma grande heterogeneidade no tamanho e na forma das células e elevada instabilidade genómica, com o aparecimento de populações poliplóides e aneuplóides. No sentido de clarificar as bases celulares e moleculares daqueles fenótipos e compreender melhor a biologia do erro de tradução do mRNA, construímos também células de levedura que inserem serina em resposta a um codão de leucina de modo indutível e controlado. Utilizaram-se perfis de mRNA total e de mRNA associado a polissomas para elucidar a resposta celular ao erro de tradução do mRNA. Observou-se a indução de genes envolvidos na resposta ao stresse geral, stresse oxidativo e na unfolded protein response (UPR). Um aumento significativo de espécies reactivas de oxigénio (ROS) e um forte impacto negativo na capacidade das células pós-mitóticas re-iniciarem o crescimento foram também observados. Este fenótipo de perda de viabilidade celular foi resgatado por scavangers de ROS, indicando que o stresse oxidativo é a principal causa de morte celular causada pelos erros de tradução. Este estudo levanta a hipótese de que o stresse oxidativo e a acumulação de ROS, ao invés do colapso súbito do proteoma, são as principais causas da degeneração celular e das doenças humanas associadas aos erros de tradução do genoma. ABSTRACT: Proteins are synthesized through the mechanism of translation, which uses the genetic code to transform the nucleic acids based information of the genome into the amino acids based information of the proteome. The genetic code evolved in such a manner that translational errors are kept to a minimum and even when they occur their impact is minimized by similar chemical properties of the amino acids. Protein synthesis fidelity is essential for proteome stability and for functional maintenance of cellular processes. Indeed, under normal physiological conditions, mistranslation occurs at frequencies that range from 10-3 to 10-5 errors per codon decoded. Situations where this basal error frequency increases are usually associated to aging and disease. However, there are some organisms where genetic code errors occur naturally at high level, suggesting that mRNA mistranslation can somehow be beneficial. In order to study the cellular response to mRNA mistranslation, we have engineered single codon mistranslation in yeast cells, using constitutive expression of mutant tRNASer genes. These mistranslating strains inserted serines at leucine-CUG sites on a proteome wide scale due to competition between the wild type tRNALeu with the mutant tRNASer. Such mistranslation event decreased yeast sporulation, viability and mating efficiencies sharply and affected sexual reproduction strongly. High heterogeneity in cell size and shape and high instability in the genome were also observed, with the appearance of some polyploid or aneuploid cell populations. To further study the cellular and molecular basis of those phenotypes and the biology of mRNA mistranslation, we have also engineered inducible mRNA misreading in yeast and used total mRNA and polysome associated mRNA profiling to determine whether codon misreading affects gene expression. Induced mistranslation up-regulated genes involved in the general stress response, oxidative stress and in the unfolded protein response (UPR). A significant increase in reactive oxygen species (ROS) and a strong negative impact on the capacity of post-mitotic cells to re-initiate growth in fresh media were also observed. This cell viability phenotype was rescued by scavengers of ROS, indicating that oxidative stress is the main cause of cell death caused by mRNA mistranslation. This study provides strong support for the hypothesis that oxidative stress and ROS accumulation, rather than sudden proteome collapse or major proteome disruption, are the main cause of the cellular degeneration observed in human diseases associated mRNA mistranslation.
Resumo:
No actual cenário de perda acelerada de biodiversidade, o nosso conhecimento dos ecossistemas marinhos, apesar da sua extensão e complexidade, continua muito inferior ao dos ecossistemas terrestres. A classe Malacostraca (Arthropoda, Crustacea), um grupo dos mais representativos nos ecossistemas marinhos, apresenta um elevado nível de diversidade morfológica e ecológica, mas difícil sua identificação ao nível de espécie requer frequentemente a ajuda de especialistas em taxonomia. A utilização recente do “barcoding” (código de barras do ADN), revelou ser um método rápido e eficaz para a identificação de espécies em diversos grupos de metazoários, incluindo os Malacostraca. No âmbito desta tese foi construída uma base de dados de código de barras de ADN envolvendo 132 espécies de Malacostraca vários locais de amostragem no Atlântico Nordeste e Mediterrâneo. As sequências de ADN mitocondrial provenientes de 601 espécimes formaram, em 95% dos casos, grupos congruentes com as identificações baseadas em características morfológicas. No entanto, foi detectado polimorfismo em seis casos e a divergência intra-específica foi elevada em exemplares pertencentes a duas espécies morfológicas, sugerindo, neste caso, a ocorrência de especiação críptica. Este estudo confirma a utilidade do código de barras de ADN para a identificação de Malacostraca marinhos. Apesar do sucesso obtido, este método apresenta alguns problemas, como por exemplo a possível amplificação de pseudogenes. A ocorrência de pseudogenes e as possíveisabordagens para a detecção e resolução deste tipo de problemas são discutidas com base em casos de estudo: análises dos códigos de barras ADN na espécie Goneplax rhomboides (Crustacea, Decapoda). A análise dos códigos de barras ADN revelou ainda grupos prioritários de decápodes para estudos taxonómicos e sistemáticos, nomeadamente os decápodes dos géneros Plesionika e Pagurus. Neste âmbito são discutidas as relações filogenéticas entre espécies seleccionadas dos géneros Plesionika e Pagurus. Este trabalho aponta para várias questões no âmbito da biodiversidade e evolução molecular da classe Malacostraca que carecem de um maior esclarecimento, podendo ser considerado como a base para estudo futuros. Análises filogenéticas adicionais integrando dados morfológicos e moleculares de um maior número de espécies e de famílias deverão certamente conduzir a uma melhor avaliação da biodiversidade e da evolução dentro da classe.
Resumo:
Na evolução bacteriana, a capacidade de explorar novos ambientes e de responder a diferentes pressões selectivas deve-se principalmente à aquisição de novos genes por transferência horizontal. Integrões são elementos genéticos bacterianos que constituem sistemas naturais de captura e expressão de cassetes de genes, sendo um dos principais mecanismos bacterianos envolvidos na aquisição de resistências a antibióticos. Estudos recentes suportam a hipótese de que os ambientes naturais constituem importantes reservatórios de integrões e cassetes de genes. Uma vez que as águas residuais são descarregadas em receptores naturais, torna-se fundamental conhecer a presença e dispersão de integrões nestes ambientes, assim como a sua associação a outros elementos genéticos móveis e a genes de resistências a antibióticos. Neste trabalho, pretendeu-se avaliar a prevalência e diversidade de integrões em águas residuais de origem animal e doméstica, bem como a sua associação a plasmídeos conjugativos, usando metodologias dependentes e independentes do cultivo de microrganismos em laboratório. Os resultados obtidos sustentam assim a hipótese de que ambientes particularmente ricos em matéria orgânica, como é o caso das águas residuais, constituem ambientes propícios à presença de integrões e à ocorrência de transferência horizontal de genes de resistência a antibióticos, embora a sua prevalência e diversidade seja influenciada pelo tipo de efluente em questão. A presença de integrões em estações de tratamento de águas residuais, e em especial nos efluentes tratados, constitui assim um factor preocupante, uma vez que tal contribui para a sua disseminação e dispersão por outros ecossistemas aquáticos, nomeadamente rios e mares. Os métodos utilizados permitiram também detectar uma elevada diversidade de cassetes de genes associadas a integrões, sendo possível que algumas dessas sequências codifiquem para proteínas que desempenhem um importante papel na adaptação bacteriana às intensas pressões selectivas características deste tipo de ambientes. Assim, é possível concluir que as comunidades bacterianas presentes em águas residuais reúnem diferentes tipos de elementos geneticamente móveis que desempenham um importante papel não só na adaptação bacteriana, mas também na disseminação de determinantes genéticos de resistência para ambientes naturais. Adicionalmente, a presença de potenciais proteínas com possíveis aplicações biotecnológicas reforça a importância das águas residuais como fontes de diversidade funcional. Este trabalho incluiu também a criação e implementação da base de dados INTEGRALL, desenvolvida com o intuito de congregar informação acerca de integrões e de uniformizar a nomenclatura de cassetes de genes.
Resumo:
Os dinoflagelados são um grupo muito diverso de protistas que possuem um conjunto de características pouco comuns. Os peridinióides são dinoflagelados com teca que é formada por seis séries latitudinais de placas, incluindo a série cingular e um anel incompleto de placas intercalares anteriores, embora as últimas estejam ausentes em algumas espécies de Peridiniopsis. São dinoflagelados com simetria bilateral em relação ao plano apical que contem o eixo dorso-ventral. Na série sulcal há apenas uma placa posterior que contacta com o limite ventral de duas grandes placas antapicais. Entre os peridinióides, a presença ou ausência de um poro apical e o número de placas no cíngulo são geralmente consideradas marcas filogenéticas importantes ao nível de género ou família. Actualmente, a definição de Peridinium Ehrenberg, o dinoflagelado mais comum de água doce, inclui organismos com combinações diferentes destas duas características. Trabalhos anteriores sobre a ultrastrutura e afinidade filogenética das espécies tipo de Peridinium, P. cinctum, e Peridiniopsis Lemmermann, P. borgei também sugerem a necessidade de reexaminar as relações taxonómicas dos peridinióides. Esta tese combina o estudo ultrastrutural de uma selecção de espécies com hipóteses filogenéticas baseadas nas sequências de LSU rDNA, para aumentar o nosso conhecimento das diferenças e afinidades dentro dos peridinióides. Tem como objectivo aumentar o nosso conhecimento das características individuais das células que possam levar a reconhecer sinapomorfias que possam ser usadas como marcadores dos peridinióides como um todo e dos seus subgrupos. As espécies escolhidas para exame pormenorizado foram: Peridinium palatinum Lauterborn, de um grupo com duas placas intercalares anteriores, seis placas cingulares e sem poro apical; Peridinium lomnickii Wo!oszy"ska, de um grupo com poro apical, três placas intercalares e seis cingulares; Peridiniopsis berolinensis (Lemmermann) Bourrelly, uma espécie heterotrófica com poro apical, sem placas intercalares e com seis placas cingulares; e Sphaerodinium cracoviense Wo!oszy"ska, um membro de um género de formas com teca com um tipo de tabulação marginalmente peridinióide, com um suposto poro apical e quatro placas intercalares anteriores. Peridinium palatinum difere de Peridinium e Peridiniopsis típicos, quer em características da teca, quer internas. As diferenças estimadas entre as sequências parciais de LSU rDNA de P. palatinum e a espécie próxima P. pseudolaeve, relativamente a P. cinctum são comparativamente grandes e, juntamente com a topologia da árvore filogenética, apoiam a separação de P. palatinum e formas próximas ao nível de género. Palatinus nov. gen. foi, então, descrito com as novas combinações Palatinus apiculatus nov. comb. (espécie tipo; sin. Peridinium palatinum), P. apiculatus var. laevis nov. comb. e P. pseudolaevis nov. comb.. As características distintivas de Palatinus incluem uma superfície das placas lisa ou um tanto granulosa, mas não areolada, um grande pirenóide central penetrado por canais citoplasmáticos e de onde radiam lobos plastidiais, e a presença de uma fiada microtubular homóloga à de um pedúnculo. As células de Palatinus saem da teca pela zona antapicalpos- cingular. Peridinium lomnickii apresenta tabulação semelhante às formas marinhas, produtoras de quistos calcários, do género Scrippsiella A.R. Loeblich. Para comparação, adicionámos novas observações ultrastruturais de S. trochoidea. Peridinium lomnickii tem uma combinação de características diferente de Peridinium, Peridiniopsis e Scrippsiella. As hipóteses filogenéticas baseadas em DNA colocam P. lomnickii no mesmo ramo que Pfiesteria Steidinger et Burkholder, Tyrannodinium e outras Pfiesteriaceae, com as quais partilha um "microtubular basket" e uma ligação peculiar entre duas placas do sulco. As características distintivas do novo género proposto Chimonodinium gen. ined. incluem, além da tabulação, a ausência de pirenóides, a presença de um "microtubular basket" com quatro ou cinco fiadas sobrepostas de microtúbulos associados a um pequeno pedúnculo, um sistema pusular com tubos pusulares bem definidos ligados aos canais flagelares, e a produção de quistos não calcários. Peridiniopsis berolinensis partilha várias características significativas com Pfiesteria e afins, como um "microtubular basket" com a capacidade de suportar um tubo de alimentação, quimiossensibilidade para encontrar presas apropriadas, o modo de natação junto às presas e a organização geral da célula. Hipóteses filogenéticas com base em LSU rDNA confirmam a afinidade entre P. berolinensis e Pfiesteria bem como a relação mais remota com a espécie tipo de Peridiniopsis, P. borgei. Estas razões justificam a proposta de Tyrannodinium gen. nov., uma nova Pfiesteriaceae que difere de outros membros do grupo por viver em água doce e nos pormenores da tabulação. Sphaerodinium cracoviense revelou a tabulação típica do género Sphaerodinium, que apresenta um número de placas intercalares superiores e pos-cingulares maior que o que é típico em peridinióides: 4 e 6, respectivamente. Observações em SEM mostraram uma estrutura apical diferente da dos peridinióides, e um sulco apical numa das placas fazendo lembrar a área apical de alguns woloszynskióides. Os pormenores do aparelho flagelar e do sistema pusular ligam o Sphaerodinium aos woloszynskióides em geral e ao género Baldinia em particular, mas não aos peridinióides. O volumoso estigma de S. cracoviense revelou ser extraplastidial e de um modelo único, composto por elementos que se encontram em woloszynskióides, mas nunca encontrados anteriormente juntos. A análise filogenética baseada nas sequências parciais de LSU rDNA também sugerem uma maior proximidade de S. cracoviense com os woloszynskióides do que com os peridinióides. Futuras análises pormenorizadas de dinoflagelados peridinióides, em especial entre os do numeroso grupo de espécies com poro apical, serão necessárias para clarificar as suas relações taxonómicas; e a produção de descrições melhoradas das características finas particulares das células serão um requisito para perceber a evolução dos caracteres dos peridinióides por forma a podermos identificar marcadores filogenéticos.
Resumo:
The genetic code establishes the rules that govern gene translation into proteins. It was established more than 3.5 billion years ago and it is one of the most conserved features of life. Despite this, several alterations to the standard genetic code have been discovered in both prokaryotes and eukaryotes, namely in the fungal CTG clade where a unique seryl transfer RNA (tRNACAG Ser) decodes leucine CUG codons as serine. This tRNACAG Ser appeared 272±25 million years ago through insertion of an adenosine in the middle position of the anticodon of a tRNACGA Ser gene, which changed its anticodon from 5´-CGA-3´ to 5´-CAG-3´. This most dramatic genetic event restructured the proteome of the CTG clade species, but it is not yet clear how and why such deleterious genetic event was selected and became fixed in those fungal genomes. In this study we have attempted to shed new light on the evolution of this fungal genetic code alteration by reconstructing its evolutionary pathway in vivo in the yeast Saccharomyces cerevisiae. For this, we have expressed wild type and mutant versions of the C. albicans tRNACGA Ser gene into S. cerevisiae and evaluated the impact of the mutant tRNACGA Ser on fitness, tRNA stability, translation efficiency and aminoacylation kinetics. Our data demonstrate that these mutants are expressed and misincorporate Ser at CUGs, but their expression is repressed through an unknown molecular mechanism. We further demonstrate, using in vivo forced evolution methodologies, that the tRNACAG Ser can be easily inactivated through natural mutations that prevent its recognition by the seryl-tRNA synthetase. The overall data show that repression of expression of the mistranslating tRNACAG Ser played a critical role on the evolution of CUG reassignment from Leu to Ser. In order to better understand the evolution of natural genetic code alterations, we have also engineered partial reassignment of various codons in yeast. The data confirmed that genetic code ambiguity affects fitness, induces protein aggregation, interferes with the cell cycle and results in nuclear and morphologic alterations, genome instability and gene expression deregulation. Interestingly, it also generates phenotypic variability and phenotypes that confer growth advantages in certain environmental conditions. This study provides strong evidence for direct and critical roles of the environment on the evolution of genetic code alterations.
Resumo:
The genetic code is not universal. Alterations to its standard form have been discovered in both prokaryotes and eukaryotes and demolished the dogma of an immutable code. For instance, several Candida species translate the standard leucine CUG codon as serine. In the case of the human pathogen Candida albicans, a serine tRNA (tRNACAGSer) incorporates in vivo 97% of serine and 3% of leucine in proteins at CUG sites. Such ambiguity is flexible and the level of leucine incorporation increases significantly in response to environmental stress. To elucidate the function of such ambiguity and clarify whether the identity of the CUG codon could be reverted from serine back to leucine, we have developed a forced evolution strategy to increase leucine incorporation at CUGs and a fluorescent reporter system to monitor such incorporation in vivo. Leucine misincorporation increased from 3% up to nearly 100%, reverting CUG identity from serine back to leucine. Growth assays showed that increasing leucine incorporation produced impressive arrays of phenotypes of high adaptive potential. In particular, strains with high levels of leucine misincorporation exhibited novel phenotypes and high level of tolerance to antifungals. Whole genome re-sequencing revealed that increasing levels of leucine incorporation were associated with accumulation of single nucleotide polymorphisms (SNPs) and loss of heterozygozity (LOH) in the higher misincorporating strains. SNPs accumulated preferentially in genes involved in cell adhesion, filamentous growth and biofilm formation, indicating that C. albicans uses its natural CUG ambiguity to increase genetic diversity in pathogenesis and drug resistance related processes. The overall data provided evidence for unantecipated flexibility of the C. albicans genetic code and highlighted new roles of codon ambiguity on the evolution of genetic and phenotypic diversity.