2 resultados para Estadios

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The introduction of chemicals into the environment by human activities may represent a serious risk to environmental and human health. Environmental risk assessment requires the use of efficient and sensitive tools to determine the impact of contaminants on the ecosystems. The use of zebrafish for the toxicity assessment of pharmaceuticals, drugs, and pollutants, is becoming well accepted due to zebrafish unique advantages for the screening of compounds for hazard identification. The aim of the present work is to apply toxicogenomic approaches to identify novel biomarkers and uncovered potential modes of action of classic and emergent contaminants able to disrupt endocrine systems, such as the Retinoic Acid Receptor, Retinoid X Receptor and the Aryl Hydrocarbon Receptor. This study relies on different nuclear and cytosolic protein receptors and other conditional (ligand- or stress- activated) transcriptional factors that are intimately involved in the regulation of defensome genes and in mechanisms of chemical toxicity. The transcriptomic effects of organic compounds, endogenous compounds, and nanoparticles were analysed during the early stages of zebrafish development. Studying the gene expression profiles of exposed and unexposed organisms to pollutants using microarrays allowed the identification of specific gene markers and to establish a "genetic code" for the tested compounds. Changes in gene expression were observed at toxicant concentrations that did not cause morphological effects. Even at low toxicant concentrations, the observed changes in transcript levels were robust for some target genes. Microarray responses of selected genes were further complemented by the real time quantitative polymerase chain reaction (qRT-PCR) methodology. The combination of bio-informatic, toxicological analyses of differential gene expression profiles, and biochemical and phenotypic responses across the treatments allowed the identification of uncovered potential mechanisms of action. In addition, this work provides an integrated set of tools that can be used to aid management-decision making by improving the predictive capability to measure environmental stress of contaminants in freshwater ecosystems. This study also illustrates the potential of zebrafish embryos for the systematic, large-scale analysis of chemical effects on developing vertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endothelial dysfunction and impaired endothelial regenerative capacity play a key role in the pathogenesis of cardiovascular disease, which is one of the major causes of mortality in chronic kidney disease (CKD) patients. Circulating endothelial cells (CEC) may be an indicator of vascular damage, while circulating endothelial progenitor cells (EPC) may be a biomarker for vascular repair. However, the simultaneously evaluation of CEC and EPC circulating levels and its relation were not previously examined in CKD population. A blood sample (18ml) of healthy subjects (n=10), early CKD (n=10) and advanced CKD patients (n=10) was used for the isolation of early and late EPCs, CECs, and hematopoietic cells, identified by flow cytometry (BD FACSCanto™ II system) using a combination of fluorochrome-conjugated primary antibodies: CD31-PE, CD45-APC Cy7, CD34-FITC, CD117-PerCp Cy5.5, CD133-APC, CD146-Pacific Blue, and CD309-PECy7. Exclusion of dead cells was done according to a fixable viability dye staining. This eightcolor staining flow cytometry optimized protocol allowed us to accurate simultaneously identify EPCs, CECs and hematopoietic cells. In addition, it was also possible to distinguish the two subpopulations of EPCs, early and late EPCs subpopulation, by CD45intCD31+CD34+CD117-CD133+CD309-CD146- and CD45intCD31+CD34+CD117-CD133-CD309+CD146- multiple labeling, respectively. Moreover, the identification of CECs and hematopoietic cells was performed by CD45-CD31+CD34-/lowCD117-CD133-CD309-CD146+ and CD34+CD117+, respectively. The levels of CECs were non-significantly increased in early CKD (312.06 ± 91.34) and advanced CKD patients (191.43±49.86) in comparison with control group (103.23±24.13). By contrast, the levels of circulating early EPCs were significantly reduced in advanced CKD population (17.03±3.23) in comparison with early CKD (32.31±4.97), p=0.04 and control group (36.25 ± 6.16), p=0.03. In addition the levels of late EPCs were significantly reduced in both advanced (6.60±1.89), p=0.01, and early CKD groups (8.42±2.58), p=0.01 compared with control group (91.54±29.06). These results were accompanied by a dramatically reduction in the recruitment, differentiation and regenerative capacity indexes in CKD population. Taken together, these results suggest an imbalance in the process of endothelial repairment in CKD population, and further propose that the indexes of recruitment, differentiation and regenerative capacity of EPCs, may help to select the patients to benefit from guiding intervention strategies to improve cardiovascular health by inducing vascular protection.