2 resultados para Environmental development
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
O zooplâncton, particularmente os cladóceros, são organismos de água doce importantes na regulação da produção primária dos ecossistemas de água doce. No entanto, também podem adaptar-se a condições salobras. Tendo em conta as previsões no âmbito das alterações climáticas, a intrusão salina pode ocorrer a par com a subida de temperatura. As populações de água doce podem ficar vulneráveis aos efeitos interativos da salinidade e da temperatura, de acordo com os seus limites de tolerância e capacidade de adaptação ao stress ambiental. Assim, a presente tese analisou as interações resultantes das alterações destes agentes de stress em populações de cladóceros de água doce. Primeiro, comparou-se a halotolerância de diferentes genótipos de Simocephalus vetulus provenientes de populações de água doce e de água salobra de modo a avaliar a existência de uma componente genética de resistência à salinidade. A sensibilidade aguda dos genótipos variou na mesma gama de concentrações; todavia, todos os genótipos da população salobra, exceto um, foram mais tolerantes do que os de água doce, em termos de tempo à imobilização. Contudo, não foi possível estabelecer uma relação entre a performance reprodutiva em condições salobras e o contexto ambiental de origem destes genótipos. Mais, estes ensaios mostraram que as populações de água doce têm potencial para tolerar incrementos de salinidade. Como tal, pode-se concluir que a seleção a que os genótipos estão sujeitos no seu local de origem foi mais fraca do que o esperado. Segundo, investigou-se a capacidade de aclimatação de Daphnia galeata à salinidade e temperatura, de modo a avaliar a halotolerância de Daphnia a duas temperaturas num cenário de aclimatação multigeracional. O objetivo foi compreender se a pré-adaptação ao stress ambiental (20ºC e 25ºC versus 0 g/L e 1 g/L de NaCl) influenciou posteriormente as respostas a estes agentes de stress. Verificou-se uma tendência para um aumento de sensibilidade ao NaCl, a temperaturas mais elevadas. No entanto, este efeito foi anulado após nove gerações, mas apenas quando os organismos foram aclimatados aos dois agentes de stress em simultâneo (salinidade e temperatura elevada). Terceiro, demonstrou-se experimentalmente que a salinidade interferiu com a competição interespecífica, alterando a composição das comunidades zooplanctónicas. Este conjunto de evidências permitiu-nos refletir nos múltiplos impactos de agentes de stress, particularmente os relacionados com as previsões de alterações climáticas. Em paralelo aos estudos de natureza experimental, e numa perspetiva de Educação para o Desenvolvimento Sustentável (EDS), importa também promover o desenvolvimento de competências necessárias à compreensão de mudanças ambientais globais (e.g., o impacto da salinidade e da temperatura) para implementar estratégias de mitigação e adaptação. Neste contexto, foi realizada uma atividade com estudantes do ensino secundário, que se tornou uma boa oportunidade para a sua aprendizagem e aquisição de competências de interpretação de dados experimentais, assim como de sensibilização para as questões ambientais.
Resumo:
During the last century mean global temperatures have been increasing. According to the predictions, the temperature change is expected to exceed 1.5ºC in this century and the warming is likely to continue. Freshwater ecosystems are among the most sensitive mainly due to changes in the hydrologic cycle and consequently changes in several physico-chemical parameters (e.g. pH, dissolved oxygen). Alterations in environmental parameters of freshwater systems are likely to affect distribution, morphology, physiology and richness of a wide range of species leading to important changes in ecosystem biodiversity and function. Moreover, they can also work as co-stressors in environments where organisms have already to cope with chemical contamination (such as pesticides), increasing the environmental risk due to potential interactions. Therefore, the objective of this work was to evaluate the effects of climate change related environmental parameters on the toxicity of pesticides to zebrafish embryos. The following environmental factors were studied: pH (3.0-12.0), dissolved oxygen level (0-8 mg/L) and UV radiation (0-500 mW/m2). The pesticides studied were the carbamate insecticide carbaryl and the benzimidazole fungicide carbendazim. Stressors were firstly tested separately in order to derive concentration- or intensity-response curves to further study the effects of binary combinations (environmental factors x pesticides) by applying mixture models. Characterization of zebrafish embryos response to environmental stress revealed that pH effects were fully established after 24 h of exposure and survival was only affected at pH values below 5 and above 10. Low oxygen levels also affected embryos development at concentrations below 4 mg/L (delay, heart rate decrease and edema), and at concentrations below 0.5 mg/L the survival was drastically reduced. Continuous exposure to UV radiation showed a strong time-dependent impact on embryos survival leading to 100% of mortality after 72 hours of exposure. The toxicity of pesticides carbaryl and carbendazim was characterized at several levels of biological organization including developmental, biochemical and behavioural allowing a mechanistic understanding of the effects and highlighting the usefulness of behavioural responses (locomotion) as a sensitive endpoint in ecotoxicology. Once the individual concentration response relationship of each stressor was established, a combined toxicity study was conducted to evaluate the effects of pH on the toxicity of carbaryl. We have shown that pH can modify the toxicity of the pesticide carbaryl. The conceptual model concentration addition allowed a precise prediction of the toxicity of the jointeffects of acid pH and carbaryl. Nevertheless, for alkaline condition both concepts failed in predicting the effects. Deviations to the model were however easy to explain as high pH values favour the hydrolysis of carbaryl with the consequent formation of the more toxic degradation product 1- naphtol. Although in the present study such explanatory process was easy to establish, for many other combinations the “interactive” nature is not so evident. In the context of the climate change few scenarios predict such increase in the pH of aquatic systems, however this was a first approach focused in the lethal effects only. In a second tier assessment effects at sublethal level would be sought and it is expectable that more subtle pH changes (more realistic in terms of climate changes scenarios) may have an effect at physiological and biochemical levels with possible long term consequences for the population fitness.