2 resultados para Energy-aware computing

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The promise of a truly mobile experience is to have the freedom to roam around anywhere and not be bound to a single location. However, the energy required to keep mobile devices connected to the network over extended periods of time quickly dissipates. In fact, energy is a critical resource in the design of wireless networks since wireless devices are usually powered by batteries. Furthermore, multi-standard mobile devices are allowing users to enjoy higher data rates with ubiquitous connectivity. However, the bene ts gained from multiple interfaces come at a cost in terms of energy consumption having profound e ect on the mobile battery lifetime and standby time. This concern is rea rmed by the fact that battery lifetime is one of the top reasons why consumers are deterred from using advanced multimedia services on their mobile on a frequent basis. In order to secure market penetration for next generation services energy e ciency needs to be placed at the forefront of system design. However, despite recent e orts, energy compliant features in legacy technologies are still in its infancy, and new disruptive architectures coupled with interdisciplinary design approaches are required in order to not only promote the energy gain within a single protocol layer, but to enhance the energy gain from a holistic perspective. A promising approach is cooperative smart systems, that in addition to exploiting context information, are entities that are able to form a coalition and cooperate in order to achieve a common goal. Migrating from this baseline, this thesis investigates how these technology paradigm can be applied towards reducing the energy consumption in mobile networks. In addition, we introduce an additional energy saving dimension by adopting an interlayer design so that protocol layers are designed to work in synergy with the host system, rather than independently, for harnessing energy. In this work, we exploit context information, cooperation and inter-layer design for developing new energy e cient and technology agnostic building blocks for mobile networks. These technology enablers include energy e cient node discovery and short-range cooperation for energy saving in mobile handsets, complemented by energy-aware smart scheduling for promoting energy saving on the network side. Analytical and simulations results were obtained, and veri ed in the lab on a real hardware testbed. Results have shown that up to 50% energy saving could be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future pervasive environments will take into consideration not only individual user’s interest, but also social relationships. In this way, pervasive communities can lead the user to participate beyond traditional pervasive spaces, enabling the cooperation among groups and taking into account not only individual interests, but also the collective and social context. Social applications in CSCW (Computer Supported Cooperative Work) field represent new challenges and possibilities in terms of use of social context information for adaptability in pervasive environments. In particular, the research describes the approach in the design and development of a context.aware framework for collaborative applications (CAFCA), utilizing user’s context social information for proactive adaptations in pervasive environments. In order to validate the proposed framework an evaluation was conducted with a group of users based on enterprise scenario. The analysis enabled to verify the impact of the framework in terms of functionality and efficiency in real-world conditions. The main contribution of this thesis was to provide a context-aware framework to support collaborative applications in pervasive environments. The research focused on providing an innovative socio-technical approach to exploit collaboration in pervasive communities. Finally, the main results reside in social matching capabilities for session formation, communication and coordinations of groupware for collaborative activities.