2 resultados para Energy saving impianti farmaceutici

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The promise of a truly mobile experience is to have the freedom to roam around anywhere and not be bound to a single location. However, the energy required to keep mobile devices connected to the network over extended periods of time quickly dissipates. In fact, energy is a critical resource in the design of wireless networks since wireless devices are usually powered by batteries. Furthermore, multi-standard mobile devices are allowing users to enjoy higher data rates with ubiquitous connectivity. However, the bene ts gained from multiple interfaces come at a cost in terms of energy consumption having profound e ect on the mobile battery lifetime and standby time. This concern is rea rmed by the fact that battery lifetime is one of the top reasons why consumers are deterred from using advanced multimedia services on their mobile on a frequent basis. In order to secure market penetration for next generation services energy e ciency needs to be placed at the forefront of system design. However, despite recent e orts, energy compliant features in legacy technologies are still in its infancy, and new disruptive architectures coupled with interdisciplinary design approaches are required in order to not only promote the energy gain within a single protocol layer, but to enhance the energy gain from a holistic perspective. A promising approach is cooperative smart systems, that in addition to exploiting context information, are entities that are able to form a coalition and cooperate in order to achieve a common goal. Migrating from this baseline, this thesis investigates how these technology paradigm can be applied towards reducing the energy consumption in mobile networks. In addition, we introduce an additional energy saving dimension by adopting an interlayer design so that protocol layers are designed to work in synergy with the host system, rather than independently, for harnessing energy. In this work, we exploit context information, cooperation and inter-layer design for developing new energy e cient and technology agnostic building blocks for mobile networks. These technology enablers include energy e cient node discovery and short-range cooperation for energy saving in mobile handsets, complemented by energy-aware smart scheduling for promoting energy saving on the network side. Analytical and simulations results were obtained, and veri ed in the lab on a real hardware testbed. Results have shown that up to 50% energy saving could be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com este trabalho pretende-se analisar o consumo de energia na indústria de faiança e identificar medidas de poupança energética. Em 2014, o consumo específico foi de 191 kgep/t e a intensidade carbónica 2,15 tCO2e/t, tendo havido uma redução de, respectivamente, 50,2% e 1,3%, comparativamente a 2010. O consumo total correspondeu a 1108 tep, sendo 66% relativo ao consumo de gás natural. Foi utilizado um analisador de energia eléctrica nos principais equipamentos consumidores, e na desagregação de consumos térmicos, efectuaram-se leituras no contador geral de gás natural e foram utilizados dados das auditorias ambiental e energética. O processo de cozedura é responsável por 58% do consumo térmico da instalação, seguido da pintura com 24%. A conformação é o sector com maior consumo de energia eléctrica, correspondendo a 23% do consumo total. As perdas térmicas pelos gases de exaustão dos equipamentos de combustão e pela envolvente do forno, considerando os mecanismos de convecção natural e radiação, correspondem a cerca de 6% do consumo térmico total, sendo necessário tomar medidas a nível do isolamento térmico e da redução do excesso de ar. A instalação de variadores de velocidade nos ventiladores do ar de combustão do forno poderia resultar em poupanças significativas, em particular, no consumo de gás natural – redução de 4 tep/ano e cerca de 2500€/ano– tendo um tempo de retorno do investimento inferior a 1 ano. Deverá ser, no entanto, garantida a alimentação de ar combustão a todos os queimadores, bem como, a combustão completa do gás natural. O funcionamento contínuo do forno poderia resultar no aumento da sua eficiência energética, com redução de custos de operação e manutenção, sendo necessário avaliar os custos adicionais de stock e de mão de obra. Verificou-se que as medidas relacionadas com a monitorização de consumos, eliminação de fugas de ar comprimido e a instalação de variadores de velocidade nos ventiladores do ar de combustão do forno poderiam resultar em reduções de consumo de 26 tep e de emissões de 66tCO2e, num total de quase 14 000€.