1 resultado para Enamel micromorphology
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
In Portugal, there is an old tradition in using clayey materials for therapeutic purposes. They are applied in pelotherapy, at several beaches of the Atlantic coast in the form of clay-sea water mixtures (peloids) to treat skin and rheumatic diseases. During many generations, peloids have been applied without scienti c studies that prove their therapeutic validity. In the last decade, the Portuguese scienti c community has become increasingly more interested in assessing the properties that make clayey materials suitable for therapeutic purposes. The abundance of clayey formations and the established practices of medical hydrology in our country turned this interest into a new perspective of application. The studied materials include di erent clays (in age and origin) mainly collected from well-known Mesozoic-Cenozoic formations, in some cases outcropping at beaches where empirical applications occur. This thesis focus in the study of silt-clay fraction (< 63 m).To determine their suitability for therapy, compositional, physicochemical, technological, thermal and rheological properties were assessed. Conventional techniques (XRD, XRF and Sedigraph) were used to assess compositional features of silt-clay fraction. Electron microscopy (SEM, VPSEM, HREM) was used to study the micromorphology and composition of clay fraction (< 2 m). Physicochemical properties (cation exchange and speci c surface) were assessed using the Ammonium Acetate and BET methods. Technological properties (plasticity and abrasivity indices) were assessed using the Atterberg limits and Einlehner abrasion tests. Thermal properties (speci c heat and cooling kinetics) were estimated by DSC analysis and cooling tests. Pharmacotechnical tests (compressibility index, sediment volume and Brook eld viscosity) were used to assess the powder owability as well as the physical stability and viscosity of clay-water dispersions. We selected as suitable Portuguese clays for health applications the samples A-Pe, A-Be2, A-Sd, J-Fr , M-To, C-Lu1, C-Lu2, Pl-Ba, M-Ga and J-Ab because they represent safe materials, with an adequate composition, good technological, physicochemical and thermal properties for application, also presenting an adequate rheology when dispersed in water. Their most relevant characteristics are the high clay minerals content, abundant smectite, illite and kaolinite, and safe hazardous concentrations. They also showed moderate capacity to exchange Ca 2+, high plasticity, low abrasivity, high speci c heat and slow cooling kinetics. They evidenced fair powder owability and good potential to formulate viscous dispersions when stabilized. Because the majority of the assessed characteristics are in accordance with those presented by clays applied in European spas for pelotherapy, we considered this group of clays also suitable for medical hydrology treatments in Portuguese spas.