2 resultados para Electric networks - Planning
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
The massive adoption of sophisticated mobile devices and applications led to the increase of mobile data in the last decade, which it is expected to continue. This increase of mobile data negatively impacts the network planning and dimension, since core networks are heavy centralized. Mobile operators are investigating atten network architectures that distribute the responsibility of providing connectivity and mobility, in order to improve the network scalability and performance. Moreover, service providers are moving the content servers closer to the user, in order to ensure high availability and performance of content delivery. Besides the e orts to overcome the explosion of mobile data, current mobility management models are heavy centralized to ensure reachability and session continuity to the users connected to the network. Nowadays, deployed architectures have a small number of centralized mobility anchors managing the mobile data and the mobility context of millions of users, which introduces issues related to performance and scalability that require costly network mechanisms. The mobility management needs to be rethought out-of-the box to cope with atten network architectures and distributed content servers closer to the user, which is the purpose of the work developed in this Thesis. The Thesis starts with a characterization of mobility management into well-de ned functional blocks, their interaction and potential grouping. The decentralized mobility management is studied through analytical models and simulations, in which di erent mobility approaches distinctly distribute the mobility management functionalities through the network. The outcome of this study showed that decentralized mobility management brings advantages. Hence, it was proposed a novel distributed and dynamic mobility management approach, which is exhaustively evaluated through analytical models, simulations and testbed experiments. The proposed approach is also integrated with seamless horizontal handover mechanisms, as well as evaluated in vehicular environments. The mobility mechanisms are also speci ed for multihomed scenarios, in order to provide data o oading with IP mobility from cellular to other access networks. In the pursuing of the optimized mobile routing path, a novel network-based strategy for localized mobility is addressed, in which a replication binding system is deployed in the mobility anchors distributed through the access routers and gateways. Finally, we go further in the mobility anchoring subject, presenting a context-aware adaptive IP mobility anchoring model that dynamically assigns the mobility anchors that provide the optimized routing path to a session, based on the user and network context. The integration of dynamic and distributed concepts in the mobility management, such as context-aware adaptive mobility anchoring and dynamic mobility support, allow the optimization of network resources and the improvement of user experience. The overall outcome demonstrates that decentralized mobility management is a promising direction, hence, its ideas should be taken into account by mobile operators in the deployment of future networks.
Resumo:
The mobile networks market (focus of this work) strategy is based on the consolidation of the installed structure and the optimization of the already existent resources. The increasingly competition and aggression of this market requires, to the mobile operators, a continuous maintenance and update of the networks in order to obtain the minimum number of fails and provide the best experience for its subscribers. In this context, this dissertation presents a study aiming to assist the mobile operators improving future network modifications. In overview, this dissertation compares several forecasting methods (mostly based on time series analysis) capable of support mobile operators with their network planning. Moreover, it presents several network indicators about the more common bottlenecks.