4 resultados para Down-Regulation

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both skeletal and cardiac muscles daily burn tremendous amounts of ATP to meet the energy requirements for contraction. So, it is not surprising that the maintenance of mitochondrial morphology, number, distribution and functionality in striated muscle are important for muscle homeostasis. In these tissues mitochondria present the added dimension of two populations, the intermyofibrillar (IMF) and the subsarcolemmal (SS) mitochondria, being IMF the most abundant one. In the present thesis, the molecular mechanisms harboured in mitochondria of striated muscles were studied using animal models, to better comprehend the role of mitochondrial plasticity in several pathophysiological conditions such as aging, diabetes mellitus and bladder cancer. The comparative analysis of IMF and SS populations isolated from heart evidenced a higher respiratory chain activity of mitochondria interspersed in the contractile apparatus. The higher susceptible of SS respiratory chain complexes subunits to carbonylation, but not to nitration, seems to justify the lower respiratory chain activity observed in this mitochondrial population. Our results showed that in heart from aged mice there is an accumulation of dysfunctional mitochondria. The age-related decrease of oxidative phosphorylation activity seems to be justified, at least partially, by the increased proneness of mitochondrial proteins as OXPHOS subunits and MnSOD to oxidative modifications. Moreover, a sedentary lifestyle seems to worsen the functional consequences of aging in heart by increasing mitochondrial proteins susceptibility to nitration. In skeletal muscle from rats with type 1 diabetes mellitus induced by streptozotocin administration, we verified the accumulation of dysfunctional mitochondria due, at least in part, to the impairment of PQC system. Indeed, the decreased activity of AAA proteases was accompanied by the accumulation of oxidatively modified mitochondrial proteins with impact in respiratory chain activity. The diminishing of mitochondria activity also underlies cancer-induced muscle wasting. Indeed, using a rat model of chemically induced urothelial carcinoma we verified that the loss of gastrocnemius mass was related to mitochondrial dysfunction due to, at least partially, the down-regulation of PQC system involving the mitochondrial proteases paraplegin and Lon. PQC impairment resulted in the accumulation of oxidatively modified mitochondrial proteins. In overall, regardless the pathophysiological stimuli that promote mitochondrial alterations, there are similarities in the pattern of disease-related mitochondrial plasticity. The diminished capacity for ATP production in striated muscle seems to be due to increased oxidative damage of mitochondrial proteins, namely subunits of respiratory chain complexes, metabolic proteins and MnSOD. Our data highlighted, for the first time, the impact of mitochondrial PQC system impairment in the accumulation of oxidized proteins, exacerbating the dysfunction of this organelle in striated muscle in several pathophysiological conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mitochondria are central organelles for cell survival with particular relevance in energy production and signalling, being mitochondrial fatty acid β–oxidation (FAO) one of the metabolic pathways harboured in this organelle. FAO disorders (FAOD) are among the most well studied inborn errors of metabolism, mainly due to their impact in health. Nevertheless, some questions remain unsolved, as their prevalence in certain European regions and how pathophysiological determinants combine towards the phenotype. Analysis of data from newborn screening programs from Portugal and Spain allowed the estimation of the birth prevalence of FAOD revealing that this group of disorders presents in Iberia (and particularly in Portugal) one of the highest European birth prevalence, mainly due to the high birth prevalence of medium chain acyl-CoA dehydrogenase deficiency. These results highlight the impact of this group of genetic disorders in this European region. The characterization of mitochondrial proteome, from patients fibroblasts with FAOD, namely multiple acyl-CoA dehydrogenase deficiency (MADD) and long chain acyl-CoA dehydrogenase deficiency (LCHADD), provided a global perspective of the mitochondrial proteome plasticity in these disorders and highlights the main molecular pathways involved in their pathogenesis. Severe MADD forms show an overexpression of chaperones, antioxidant enzymes (MnSOD), and apoptotic proteins. An overexpression of glycolytic enzymes, which reflects cellular adaptation to energy deficiency due to FAO blockage, was also observed. When LCHADD fibroblasts were analysed a metabolic switching to glycolysis was also observed with overexpression of apoptotic proteins and modulation of the antioxidant defence system. Severe LCHADD present increased ROS alongside with up regulation of MnSOD while moderate forms have lower ROS and down-regulation of MnSOD. This probably reflects the role of MnSOD in buffering cellular ROS, maintain them at levels that allow cells to avoid damage and start a cellular response towards survival. When ROS levels are very high cells have to overexpress MnSOD for detoxifying proposes. When severe forms of MADD were compared to moderate forms no major differences were noticed, most probably because ROS levels in moderate MADD are high enough to trigger a response similar to that observed in severe forms. Our data highlights, for the first time, the differences in the modulation of antioxidant defence among FAOD spectrum. Overall, the data reveals the main pathways modulated in FAOD and the importance of ROS levels and antioxidant defence system modulation for disease severity. These results highlight the complex interaction between phenotypic determinants in FAOD that include genetic, epigenetic and environmental factors. The development of future better treatment approaches is dependent on the knowledge on how all these determinants interact towards phenotype.!

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As fluoroquinolonas são antibióticos que têm um largo espectro de ação contra bactérias, especialmente Gram-negativas. O seu mecanismo de ação assenta na inibição de enzimas responsáveis pela replicação do DNA. Porém, devido ao seu uso indevido, o surgimento de resistência bacteriana a estes antibióticos tem-se tornado um grave problema de saúde pública. Uma vez que os seus alvos de ação se situam no meio intracelular, a redução da permeabilidade da membrana externa de bactérias Gram-negativas constitui um dos mecanismos de resistência mais conhecidos. Esta redução é associada à baixa expressão ou mutações em porinas necessárias para permitir o seu transporte, mais concretamente, da OmpF. Estudos prévios demonstraram que a coordenação de fluoroquinolonas com iões metálicos divalentes e 1,10-fenantrolina (genericamente designados metaloantibióticos) são potenciais candidatos como alternativa às fluoroquinolonas convencionais. Estes metaloantibióticos exibem um efeito antimicrobiano comparável ou superior à fluoroquinolona na forma livre, mas parecem ter uma via de translocação diferente, independente de porinas. Estas diferenças no mecanismo de captura podem ser fundamentais para contornar a resistência bacteriana. De forma a compreender o papel dos lípidos no mecanismo de entrada dos metaloantibióticos, estudou-se a interação e localização dos metaloantibióticos da Ciprofloxacina (2ª geração), da Levofloxacina (3ª geração) e Moxifloxacina (4ª geração) com um modelo de membranas de Escherichia coli desprovido de porinas. Estes estudos foram realizados através de técnicas de espectroscopia de fluorescência, por medições em modo estacionário e resolvida no tempo. Os coeficientes de partição determinados demonstraram uma interação mais elevada dos metaloantibióticos relativamente às respetivas fluoroquinolonas na forma livre, um facto que está diretamente relacionado com as espécies existentes em solução a pH fisiológico. Os estudos de localização mostraram que estes metaloantibióticos devem estar inseridos na membrana bacteriana, confirmando a sua entrada independente de porinas. Este mecanismo de entrada, pela via hidrofóbica, é potenciado por interações eletrostáticas entre as espécies catiónicas de metaloantibiótico que existem a pH 7,4 e os grupos carregados negativamente dos fosfolípidos da membrana. Desta forma, os resultados obtidos neste estudo sugerem que a via de entrada dos metaloantibióticos e das respetivas fluoroquinolonas deve ser diferente. Os metaloantibióticos são candidatos adequados para a realização de mais testes laboratoriais e uma alternativa promissora para substituir as fluoroquinolonas convencionais, uma vez que parecem ultrapassar um dos principais mecanismos de resistência bacteriana a esta classe de antibióticos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The function of a complex nervous system relies on an intricate interaction between neurons and glial cells. However, as glial cells are generally born distant from the place where they settle, molecular cues are important to direct their migration. Glial cell migration is important in both normal development and disease, thus current research in the laboratory has been focused on dissecting regulatory events underlying that crucial process. With this purpose, the Drosophila eye imaginal disc has been used as a model. In response to neuronal photoreceptor differentiation, glial cells migrate from the CNS into the eye disc where they act to correctly wrap axons. To ensure proper development, attractive and repulsive signals must coordinate glial cell migration. Importantly, one of these signals is Bnl, a Fibroblast Growth Factor (FGF) ligand expressed by retinal progenitor cells that was suggested to act as a non-autonomous negative regulator of excessive glial cell migration (overmigration) by binding and activating the Btl receptor expressed by glial cells. Through the experimental results described in chapter 3 we gained a detailed insight into the function of bnl in eye disc growth, photoreceptor development, and glia migration. Interestingly, we did not find a direct correlation between the defects on the ongoing photoreceptors and the glia overmigration phenotype; however, bnl knockdown caused apoptosis of eye progenitor cells what was strongly correlated with glia migration defects. Glia overmigration due to Bnl down-regulation in eye progenitor cells was rescued by inhibiting the pro-apoptotic genes or caspases activity, as well as, by depleting JNK or Dp53 function in retinal progenitor cells. Thus, we suggest a cross-talk between those developmental signals in the control of glia migration at a distance. Importantly, these results suggest that Bnl does not control glial migration in the eye disc exclusively through its ability to bind and activate its receptor Btl in glial cells. We also discuss possible biological roles for the glia overmigration in the bnl knockdown background. Previous results in the lab showed an interaction between dMyc, a master regulator of tissue growth, and Dpp, a Transforming Growth Factor-β important for retinal patterning and for accurate glia migration into the eye disc. Thus, we became interested in understanding putative relationships between Bnl and dMyc. In chapter 4, we show that they positively cooperate in order to ensure proper development of the eye disc. This work highlights the importance of the FGF signaling in eye disc development and reveals a signaling network where a range of extra- and intra-cellular signals cooperate to non-autonomously control glial cell migration. Therefore, such inter-relations could be important in other Drosophila cellular contexts, as well as in vertebrate tissue development.