2 resultados para Dna-replication
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
As fluoroquinolonas são antibióticos que têm um largo espectro de ação contra bactérias, especialmente Gram-negativas. O seu mecanismo de ação assenta na inibição de enzimas responsáveis pela replicação do DNA. Porém, devido ao seu uso indevido, o surgimento de resistência bacteriana a estes antibióticos tem-se tornado um grave problema de saúde pública. Uma vez que os seus alvos de ação se situam no meio intracelular, a redução da permeabilidade da membrana externa de bactérias Gram-negativas constitui um dos mecanismos de resistência mais conhecidos. Esta redução é associada à baixa expressão ou mutações em porinas necessárias para permitir o seu transporte, mais concretamente, da OmpF. Estudos prévios demonstraram que a coordenação de fluoroquinolonas com iões metálicos divalentes e 1,10-fenantrolina (genericamente designados metaloantibióticos) são potenciais candidatos como alternativa às fluoroquinolonas convencionais. Estes metaloantibióticos exibem um efeito antimicrobiano comparável ou superior à fluoroquinolona na forma livre, mas parecem ter uma via de translocação diferente, independente de porinas. Estas diferenças no mecanismo de captura podem ser fundamentais para contornar a resistência bacteriana. De forma a compreender o papel dos lípidos no mecanismo de entrada dos metaloantibióticos, estudou-se a interação e localização dos metaloantibióticos da Ciprofloxacina (2ª geração), da Levofloxacina (3ª geração) e Moxifloxacina (4ª geração) com um modelo de membranas de Escherichia coli desprovido de porinas. Estes estudos foram realizados através de técnicas de espectroscopia de fluorescência, por medições em modo estacionário e resolvida no tempo. Os coeficientes de partição determinados demonstraram uma interação mais elevada dos metaloantibióticos relativamente às respetivas fluoroquinolonas na forma livre, um facto que está diretamente relacionado com as espécies existentes em solução a pH fisiológico. Os estudos de localização mostraram que estes metaloantibióticos devem estar inseridos na membrana bacteriana, confirmando a sua entrada independente de porinas. Este mecanismo de entrada, pela via hidrofóbica, é potenciado por interações eletrostáticas entre as espécies catiónicas de metaloantibiótico que existem a pH 7,4 e os grupos carregados negativamente dos fosfolípidos da membrana. Desta forma, os resultados obtidos neste estudo sugerem que a via de entrada dos metaloantibióticos e das respetivas fluoroquinolonas deve ser diferente. Os metaloantibióticos são candidatos adequados para a realização de mais testes laboratoriais e uma alternativa promissora para substituir as fluoroquinolonas convencionais, uma vez que parecem ultrapassar um dos principais mecanismos de resistência bacteriana a esta classe de antibióticos.
Resumo:
A génese de um cancro está dependente da acumulação de mutações genéticas que dão origem a instabilidade genómica, que por sua vez resulta na proliferação descontrolada. Para prevenir a acumulação destas mutações, as células têm mecanismos de controlo (checkpoints) que suspendem o ciclo celular e accionam as vias de reparação do ADN. Estes eventos são muitas vezes regulados por dinâmicas de (des)fosforilação de proteínas. As proteínas fosfatases (PPs), enzimas responsáveis pela remoção do grupo fosfato de resíduos fosforilados, desempenham funções cruciais na regulação de muitos mecanismos celulares. Enquanto que no início do projecto as cinases envolvidas no checkpoint da replicação estavam bem estabelecidas, as PPs envolvidas não eram conhecidas. A Chk1, um componente da maquinaria do checkpoint da replicação, é exemplo dessa regulação por (des)fosforilação, como sejam nos resíduos Ser317 e Ser345. Assim, como primeira abordagem para determinar quais os grupos de PPs envolvidos na regulação do checkpoint da replicação, decidimos investigar o seu papel na regulação da fosforilação da Chk1. A primeira conclusão é que a desfosforilação da Chk1 ao longo do tempo, tanto in vivo como in vitro, ocorre com uma dinâmica bi-fásica. Em segundo, a abordagem in vitro sugere que as famílias PP1, PP2A e PP2C estão envolvidas na desfosforilação da Chk1. Uma vez que a família PP2A foi a que mostrou a maior acção nesta reacção, decidimos investigar outros membros da família in vivo, primeiro com uma abordagem geral (tratando com OA ou sobreexpressando a PME-1), e depois com o knockdown específico da PP4 e PP6 (através de siRNA). Os resultados mostram que a inibição das PPs afectam tanto a desfosforilação como o estado de activação da Chk1 em resposta a tratamento com Hidroxiureia (HU). Todas as PPs testadas in vivo pareceram ser capazes de regular, a níveis diferentes, tanto a fosforilação como a desfosforilação da Chk1. A função das PPs foi também investigada ao nível: da regulação do disparo das origens de replicação, e da recuperação da suspensão da replicação, induzida pela HU. No último caso, os dados indicam que na situação simultânea de knockdown da PP4 com tratamento de HU, há um atraso do ciclo celular na resolução da transição de G2/M. No ensaio de replicação por pulse-chase, os resultamos mostram que tanto o tratamento com OA, como a sobre-expressão de I-2 ou PME-1, atrasam a cronologia do disparo programado das origens de replicação. No entanto, nenhum dos tratamentos efectuados parece desregular o início do checkpoint da replicação. Um rastreio de 2-híbrido de levedura com uma biblioteca de cDNA de testículo humano foi realizado, usando a Chk1 como isco, no sentido de descobrir novos interactores e definir novas possíveis funções para a Chk1 no contexto da meiose. Com base nos resultados do rastreio, duas novas funções são sugeridas: a interacção com a GAGE12 sugere uma função na recombinação genómica/vigilância do genoma durante a meiose, e as interacções com a EEF1α1 e a RPS5 sugerem uma função na regulação da síntese proteíca. Estas experiências fornecem um visão geral para a compreensão da diversidade de funções das proteínas fosfatases envolvidas no checkpoint da replicação, bem como, abre novos caminhos para o desenvolvimento de novas drogas para o tratamento do cancro.