2 resultados para Discrete Regression and Qualitative Choice Models

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ria deAveiro is a very complex shallow water coastal lagoon located on the northwest of Portugal. Important issues would be left unanswered without a good understanding of hydrodynamic and transport processes occurring in the lagoon. Calibration and validation of hydrodynamic, salt and heat transport models for Ria de Aveiro lagoon are presented. The calibration of the hydrodynamic model was performed adjusting the bottom friction coefficient, through the comparison between measured and predicted time series of sea surface elevation for 22 stations. Harmonic analysis was performed in order to evaluate the model's accuracy. To validate the hydrodynamic model measured and predicted SSE values were compared for 11 stations, as well as main flow direction velocities for 10 stations. The salt and heat transport models were calibrated comparing measured and predicted time series of salinity and water temperature for 7 stations, and the RMS of the difference between the series was determined. These models were validated comparing the model results with an independent field data set. The hydrodynamic and the salt and heat transport models for Ria de Aveiro were successfully calibrated and validated. They reproduce accurately the barotropic flows and can therefore adequately represent the salt and heat transport and the heat transfer processes occurring in Ria deAveiro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As técnicas estatísticas são fundamentais em ciência e a análise de regressão linear é, quiçá, uma das metodologias mais usadas. É bem conhecido da literatura que, sob determinadas condições, a regressão linear é uma ferramenta estatística poderosíssima. Infelizmente, na prática, algumas dessas condições raramente são satisfeitas e os modelos de regressão tornam-se mal-postos, inviabilizando, assim, a aplicação dos tradicionais métodos de estimação. Este trabalho apresenta algumas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, em particular na estimação de modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. A investigação é desenvolvida em três vertentes, nomeadamente na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, na estimação do parâmetro ridge em regressão ridge e, por último, em novos desenvolvimentos na estimação com máxima entropia. Na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, o trabalho desenvolvido evidencia um melhor desempenho dos estimadores de máxima entropia em relação ao estimador de máxima verosimilhança. Este bom desempenho é notório em modelos com poucas observações por estado e em modelos com um grande número de estados, os quais são comummente afetados por colinearidade. Espera-se que a utilização de estimadores de máxima entropia contribua para o tão desejado aumento de trabalho empírico com estas fronteiras de produção. Em regressão ridge o maior desafio é a estimação do parâmetro ridge. Embora existam inúmeros procedimentos disponíveis na literatura, a verdade é que não existe nenhum que supere todos os outros. Neste trabalho é proposto um novo estimador do parâmetro ridge, que combina a análise do traço ridge e a estimação com máxima entropia. Os resultados obtidos nos estudos de simulação sugerem que este novo estimador é um dos melhores procedimentos existentes na literatura para a estimação do parâmetro ridge. O estimador de máxima entropia de Leuven é baseado no método dos mínimos quadrados, na entropia de Shannon e em conceitos da eletrodinâmica quântica. Este estimador suplanta a principal crítica apontada ao estimador de máxima entropia generalizada, uma vez que prescinde dos suportes para os parâmetros e erros do modelo de regressão. Neste trabalho são apresentadas novas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, tendo por base o estimador de máxima entropia de Leuven, a teoria da informação e a regressão robusta. Os estimadores desenvolvidos revelam um bom desempenho em modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. Por último, são apresentados alguns códigos computacionais para estimação com máxima entropia, contribuindo, deste modo, para um aumento dos escassos recursos computacionais atualmente disponíveis.