2 resultados para Directional couplers
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Directionally solidified zirconia-based eutectic (DSE) fibres were obtained using the laser floating zone (LFZ) method. Two systems were investigated: zirconia-barium zirconate and zirconia-mullite. The purpose was to take advantage of zirconia properties, particularly as an ionic conductor and a mechanical rein-forcement phase. The influence of processing conditions in the structural and microstructural characteristics and their consequences on the electrical and mechanical behaviour were the focus of this thesis. The novel zirconia-barium zirconate eutectic materials were developed in order to combine oxygen ionic conduction through zirconia with protonic conduction from barium zirconate, promoting mixed ionic conduction behaviour. The mi-crostructure of the fibres comprises two alternated regions: bands having coarser zirconia-rich microstructure; and inter-band regions changing from a homogeneous coupled eutectic, at the lowest pulling rate, to columnar colony microstructure, for the faster grown fibres. The bands inter-distance increases with the growth rate and, at 300 mm/h, zirconia dendrites develop enclosed in a fine-interpenetrated network of 50 vol.% ZrO2-50 vol.% BaZrO3. Both phases display contiguity without interphase boundaries, according to impedance spec-troscopy data. Yttria-rich compositions were considered in order to promote the yttrium incorporation in both phases, as revealed by Raman spectroscopy and corroborated by the elemental chemical analysis in energy dispersive spectros-copy. This is a mandatory condition to attain simultaneous contribution to the mixed ionic conduction. Such results are supported by impedance spectrosco-py measurements, which clearly disclose an increase of total ionic conduction for lower temperatures in wet/reduction atmospheres (activation energies of 35 kJ/mol in N2+H2 and 48 kJ/mol in air, in the range of 320-500 ºC) compared to the dry/oxidizing conditions (attaining values close to 90 kJ/mol, above 500 ºC). At high temperatures, the proton incorporation into the barium zirconate is un-favourable, so oxygen ion conduction through zirconia prevails, in dry and oxi-dizing environments, reaching a maximum of 1.3x10-2 S/cm in dry air, at ~1000 ºC. The ionic conduction of zirconia was alternatively combined with another high temperature oxygen ion conductor, as mullite, in order to obtain a broad elec-trolytic domain. The growth rate has a huge influence in the amount of phases and microstructure of the directionally solidified zirconia-mullite fibres. Their microstructure changes from planar coupled eutectic to dendritic eutectic mor-phology, when the growth rate rises from 1 to 500 mm/h, along with an incre-ment of tetragonal zirconia content. Furthermore, high growth rates lead to the development of Al-Si-Y glassy phase, and thus less mullite amount, which is found to considerably reduce the total ionic conduction of as-grown fibres. The reduction of the glassy phase content after annealing (10h; 1400 ºC) promotes an increase of the total ionic conduction (≥0.01 S/cm at 1370 °C), raising the mullite and tetragonal zirconia contents and leading to microstructural differ-ences, namely the distribution and size of the zirconia constituent. This has important consequences in conductivity by improving the percolation pathways. A notable increase in hardness is observed from 11.3 GPa for the 10 mm/h pulled fibre to 21.2 GPa for the fibre grown at 500 mm/h. The ultra-fine eutectic morphology of the 500 mm/h fibres results in a maximum value of 534 MPa for room temperature bending strength, which decreases to about one-fourth of this value at high temperature testing (1400 ºC) due to the soft nature of the glassy-matrix.
Resumo:
Systems equipped with multiple antennas at the transmitter and at the receiver, known as MIMO (Multiple Input Multiple Output) systems, offer higher capacities, allowing an efficient exploitation of the available spectrum and/or the employment of more demanding applications. It is well known that the radio channel is characterized by multipath propagation, a phenomenon deemed problematic and whose mitigation has been achieved through techniques such as diversity, beamforming or adaptive antennas. By exploring conveniently the spatial domain MIMO systems turn the characteristics of the multipath channel into an advantage and allow creating multiple parallel and independent virtual channels. However, the achievable benefits are constrained by the propagation channel’s characteristics, which may not always be ideal. This work focuses on the characterization of the MIMO radio channel. It begins with the presentation of the fundamental results from information theory that triggered the interest on these systems, including the discussion of some of their potential benefits and a review of the existing channel models for MIMO systems. The characterization of the MIMO channel developed in this work is based on experimental measurements of the double-directional channel. The measurement system is based on a vector network analyzer and a two-dimensional positioning platform, both controlled by a computer, allowing the measurement of the channel’s frequency response at the locations of a synthetic array. Data is then processed using the SAGE (Space-Alternating Expectation-Maximization) algorithm to obtain the parameters (delay, direction of arrival and complex amplitude) of the channel’s most relevant multipath components. Afterwards, using a clustering algorithm these data are grouped into clusters. Finally, statistical information is extracted allowing the characterization of the channel’s multipath components. The information about the multipath characteristics of the channel, induced by existing scatterers in the propagation scenario, enables the characterization of MIMO channel and thus to evaluate its performance. The method was finally validated using MIMO measurements.