2 resultados para Decentralized participating management
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
The massive adoption of sophisticated mobile devices and applications led to the increase of mobile data in the last decade, which it is expected to continue. This increase of mobile data negatively impacts the network planning and dimension, since core networks are heavy centralized. Mobile operators are investigating atten network architectures that distribute the responsibility of providing connectivity and mobility, in order to improve the network scalability and performance. Moreover, service providers are moving the content servers closer to the user, in order to ensure high availability and performance of content delivery. Besides the e orts to overcome the explosion of mobile data, current mobility management models are heavy centralized to ensure reachability and session continuity to the users connected to the network. Nowadays, deployed architectures have a small number of centralized mobility anchors managing the mobile data and the mobility context of millions of users, which introduces issues related to performance and scalability that require costly network mechanisms. The mobility management needs to be rethought out-of-the box to cope with atten network architectures and distributed content servers closer to the user, which is the purpose of the work developed in this Thesis. The Thesis starts with a characterization of mobility management into well-de ned functional blocks, their interaction and potential grouping. The decentralized mobility management is studied through analytical models and simulations, in which di erent mobility approaches distinctly distribute the mobility management functionalities through the network. The outcome of this study showed that decentralized mobility management brings advantages. Hence, it was proposed a novel distributed and dynamic mobility management approach, which is exhaustively evaluated through analytical models, simulations and testbed experiments. The proposed approach is also integrated with seamless horizontal handover mechanisms, as well as evaluated in vehicular environments. The mobility mechanisms are also speci ed for multihomed scenarios, in order to provide data o oading with IP mobility from cellular to other access networks. In the pursuing of the optimized mobile routing path, a novel network-based strategy for localized mobility is addressed, in which a replication binding system is deployed in the mobility anchors distributed through the access routers and gateways. Finally, we go further in the mobility anchoring subject, presenting a context-aware adaptive IP mobility anchoring model that dynamically assigns the mobility anchors that provide the optimized routing path to a session, based on the user and network context. The integration of dynamic and distributed concepts in the mobility management, such as context-aware adaptive mobility anchoring and dynamic mobility support, allow the optimization of network resources and the improvement of user experience. The overall outcome demonstrates that decentralized mobility management is a promising direction, hence, its ideas should be taken into account by mobile operators in the deployment of future networks.
Resumo:
Over the last decade, the most widespread approaches for traditional management were based on the Simple Network Management Protocol (SNMP) or Common Management Information Protocol (CMIP). However, they both have several problems in terms of scalability, due to their centralization characteristics. Although the distributed management approaches exhibit better performance in terms of scalability, they still underperform regarding communication costs, autonomy, extensibility, exibility, robustness, and cooperation between network nodes. The cooperation between network nodes normally requires excessive overheads for synchronization and dissemination of management information in the network. For emerging dynamic and large-scale networking environments, as envisioned in Next Generation Networks (NGNs), exponential growth in the number of network devices and mobile communications and application demands is expected. Thus, a high degree of management automation is an important requirement, along with new mechanisms that promote it optimally and e ciently, taking into account the need for high cooperation between the nodes. Current approaches for self and autonomic management allow the network administrator to manage large areas, performing fast reaction and e ciently facing unexpected problems. The management functionalities should be delegated to a self-organized plane operating within the network, that decrease the network complexity and the control information ow, as opposed to centralized or external servers. This Thesis aims to propose and develop a communication framework for distributed network management which integrates a set of mechanisms for initial communication, exchange of management information, network (re) organization and data dissemination, attempting to meet the autonomic and distributed management requirements posed by NGNs. The mechanisms are lightweight and portable, and they can operate in di erent hardware architectures and include all the requirements to maintain the basis for an e cient communication between nodes in order to ensure autonomic network management. Moreover, those mechanisms were explored in diverse network conditions and events, such as device and link errors, di erent tra c/network loads and requirements. The results obtained through simulation and real experimentation show that the proposed mechanisms provide a lower convergence time, smaller overhead impact in the network, faster dissemination of management information, increase stability and quality of the nodes associations, and enable the support for e cient data information delivery in comparison to the base mechanisms analyzed. Finally, all mechanisms for communication between nodes proposed in this Thesis, that support and distribute the management information and network control functionalities, were devised and developed to operate in completely decentralized scenarios.