3 resultados para Dark matter (Astronomy)
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
We show that the decay of the inflaton field may be incomplete, while nevertheless successfully reheating the Universe and leaving a stable remnant that accounts for the present dark matter abundance. We note, in particular, that since the mass of the inflaton decay products is field dependent, one can construct models, endowed with an appropriate discrete symmetry, where inflaton decay is kinematically forbidden at late times and only occurs during the initial stages of field oscillations after inflation. We show that this is sufficient to ensure the transition to a radiation-dominated era and that inflaton particles typically thermalize in the process. They eventually decouple and freeze out, yielding a thermal dark matter relic. We discuss possible implementations of this generic mechanism within consistent cosmological and particle physics scenarios, for both single-field and hybrid inflation.
Resumo:
We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10^-6 - 10^-4 eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall–Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.
Resumo:
The Complex singlet extension of the Standard Model (CxSM) is the simplest extension that provides scenarios for Higgs pair production with different masses. The model has two interesting phases: the dark matter phase, with a Standard Model-like Higgs boson, a new scalar and a dark matter candidate; and the broken phase, with all three neutral scalars mixing. In the latter phase Higgs decays into a pair of two different Higgs bosons are possible. In this study we analyse Higgs-to-Higgs decays in the framework of singlet extensions of the Standard Model (SM), with focus on the CxSM. After demonstrating that scenarios with large rates for such chain decays are possible we perform a comparison between the NMSSM and the CxSM. We find that, based on Higgs-to-Higgs decays, the only possibility to distinguish the two models at the LHC run 2 is through final states with two different scalars. This conclusion builds a strong case for searches for final states with two different scalars at the LHC run 2. Finally, we propose a set of benchmark points for the real and complex singlet extensions to be tested at the LHC run 2. They have been chosen such that the discovery prospects of the involved scalars are maximised and they fulfil the dark matter constraints. Furthermore, for some of the points the theory is stable up to high energy scales. For the computation of the decay widths and branching ratios we developed the Fortran code sHDECAY, which is based on the implementation of the real and complex singlet extensions of the SM in HDECAY.