3 resultados para Cyclic generalized polynomial codes
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Maximum distance separable (MDS) convolutional codes are characterized through the property that the free distance meets the generalized Singleton bound. The existence of free MDS convolutional codes over Zpr was recently discovered in Oued and Sole (IEEE Trans Inf Theory 59(11):7305–7313, 2013) via the Hensel lift of a cyclic code. In this paper we further investigate this important class of convolutional codes over Zpr from a new perspective. We introduce the notions of p-standard form and r-optimal parameters to derive a novel upper bound of Singleton type on the free distance. Moreover, we present a constructive method for building general (non necessarily free) MDS convolutional codes over Zpr for any given set of parameters.
Resumo:
This paper revisits strongly-MDS convolutional codes with maximum distance profile (MDP). These are (non-binary) convolutional codes that have an optimum sequence of column distances and attains the generalized Singleton bound at the earliest possible time frame. These properties make these convolutional codes applicable over the erasure channel, since they are able to correct a large number of erasures per time interval. The existence of these codes have been shown only for some specific cases. This paper shows by construction the existence of convolutional codes that are both strongly-MDS and MDP for all choices of parameters.
Resumo:
In this contribution, we propose a first general definition of rank-metric convolutional codes for multi-shot network coding. To this aim, we introduce a suitable concept of distance and we establish a generalized Singleton bound for this class of codes.