9 resultados para Convolutional Algebra
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
In this thesis we consider two-dimensional (2D) convolutional codes. As happens in the one-dimensional (1D) case one of the major issues is obtaining minimal state-space realizations for these codes. It turns out that the problem of minimal realization of codes is not equivalent to the minimal realization of encoders. This is due to the fact that the same code may admit different encoders with different McMillan degrees. Here we focus on the study of minimality of the realizations of 2D convolutional codes by means of separable Roesser models. Such models can be regarded as a series connection between two 1D systems. As a first step we provide an algorithm to obtain a minimal realization of a 1D convolutional code starting from a minimal realization of an encoder of the code. Then, we restrict our study to two particular classes of 2D convolutional codes. The first class to be considered is the one of codes which admit encoders of type n 1. For these codes, minimal encoders (i.e., encoders for which a minimal realization is also minimal as a code realization) are characterized enabling the construction of minimal code realizations starting from such encoders. The second class of codes to be considered is the one constituted by what we have called composition codes. For a subclass of these codes, we propose a method to obtain minimal realizations by means of separable Roesser models.
Resumo:
This paper revisits strongly-MDS convolutional codes with maximum distance profile (MDP). These are (non-binary) convolutional codes that have an optimum sequence of column distances and attains the generalized Singleton bound at the earliest possible time frame. These properties make these convolutional codes applicable over the erasure channel, since they are able to correct a large number of erasures per time interval. The existence of these codes have been shown only for some specific cases. This paper shows by construction the existence of convolutional codes that are both strongly-MDS and MDP for all choices of parameters.
Resumo:
The main results of this paper are twofold: the first one is a matrix theoretical result. We say that a matrix is superregular if all of its minors that are not trivially zero are nonzero. Given a a×b, a ≥ b, superregular matrix over a field, we show that if all of its rows are nonzero then any linear combination of its columns, with nonzero coefficients, has at least a−b + 1 nonzero entries. Secondly, we make use of this result to construct convolutional codes that attain the maximum possible distance for some fixed parameters of the code, namely, the rate and the Forney indices. These results answer some open questions on distances and constructions of convolutional codes posted in the literature.
Resumo:
In this paper we use some classical ideas from linear systems theory to analyse convolutional codes. In particular, we exploit input-state-output representations of periodic linear systems to study periodically time-varying convolutional codes. In this preliminary work we focus on the column distance of these codes and derive explicit necessary and sufficient conditions for an (n, 2, 1) periodically time-varying convolutional code to have Maximum Distance Profile (MDP).
Resumo:
In this paper we investigate a novel model of concatenation of a pair of two-dimensional (2D) convolutional codes. We consider finite-support 2D convolutional codes and choose the so-called Fornasini-Marchesini input-state-output (ISO) model to represent these codes. More concretely, we interconnect in series two ISO representations of two 2D convolutional codes and derive the ISO representation of the ob- tained 2D convolutional code. We provide necessary condition for this representation to be minimal. Moreover, structural properties of modal reachability and modal observability of the resulting 2D convolutional codes are investigated.
Resumo:
In this contribution, we propose a first general definition of rank-metric convolutional codes for multi-shot network coding. To this aim, we introduce a suitable concept of distance and we establish a generalized Singleton bound for this class of codes.
Resumo:
Maximum distance separable (MDS) convolutional codes are characterized through the property that the free distance meets the generalized Singleton bound. The existence of free MDS convolutional codes over Zpr was recently discovered in Oued and Sole (IEEE Trans Inf Theory 59(11):7305–7313, 2013) via the Hensel lift of a cyclic code. In this paper we further investigate this important class of convolutional codes over Zpr from a new perspective. We introduce the notions of p-standard form and r-optimal parameters to derive a novel upper bound of Singleton type on the free distance. Moreover, we present a constructive method for building general (non necessarily free) MDS convolutional codes over Zpr for any given set of parameters.
Resumo:
Taking a Fiedler’s result on the spectrum of a matrix formed from two symmetric matrices as a motivation, a more general result is deduced and applied to the determination of adjacency and Laplacian spectra of graphs obtained by a generalized join graph operation on families of graphs (regular in the case of adjacency spectra and arbitrary in the case of Laplacian spectra). Some additional consequences are explored, namely regarding the largest eigenvalue and algebraic connectivity.
Resumo:
Compressed sensing is a new paradigm in signal processing which states that for certain matrices sparse representations can be obtained by a simple l1-minimization. In this thesis we explore this paradigm for higher-dimensional signal. In particular three cases are being studied: signals taking values in a bicomplex algebra, quaternionic signals, and complex signals which are representable by a nonlinear Fourier basis, a so-called Takenaka-Malmquist system.