2 resultados para Continuous Utility Functions

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increased capabilities (e.g., processing, storage) of portable devices along with the constant need of users to retrieve and send information have introduced a new form of communication. Users can seamlessly exchange data by means of opportunistic contacts among them and this is what characterizes the opportunistic networks (OppNets). OppNets allow users to communicate even when an end-to-end path may not exist between them. Since 2007, there has been a trend to improve the exchange of data by considering social similarity metrics. Social relationships, shared interests, and popularity are examples of such metrics that have been employed successfully: as users interact based on relationships and interests, this information can be used to decide on the best next forwarders of information. This Thesis work combines the features of today's devices found in the regular urban environment with the current social-awareness trend in the context of opportunistic routing. To achieve this goal, this work was divided into di erent tasks that map to a set of speci c objectives, leading to the following contributions: i) an up-to-date opportunistic routing taxonomy; ii) a universal evaluation framework that aids in devising and testing new routing proposals; iii) three social-aware utility functions that consider the dynamic user behavior and can be easily incorporated to other routing proposals; iv) two opportunistic routing proposals based on the users' daily routines and on the content traversing the network and interest of users in such content; and v) a structure analysis of the social-based network formed based on the approaches devised in this work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Future emerging market trends head towards positioning based services placing a new perspective on the way we obtain and exploit positioning information. On one hand, innovations in information technology and wireless communication systems enabled the development of numerous location based applications such as vehicle navigation and tracking, sensor networks applications, home automation, asset management, security and context aware location services. On the other hand, wireless networks themselves may bene t from localization information to improve the performances of di erent network layers. Location based routing, synchronization, interference cancellation are prime examples of applications where location information can be useful. Typical positioning solutions rely on measurements and exploitation of distance dependent signal metrics, such as the received signal strength, time of arrival or angle of arrival. They are cheaper and easier to implement than the dedicated positioning systems based on ngerprinting, but at the cost of accuracy. Therefore intelligent localization algorithms and signal processing techniques have to be applied to mitigate the lack of accuracy in distance estimates. Cooperation between nodes is used in cases where conventional positioning techniques do not perform well due to lack of existing infrastructure, or obstructed indoor environment. The objective is to concentrate on hybrid architecture where some nodes have points of attachment to an infrastructure, and simultaneously are interconnected via short-range ad hoc links. The availability of more capable handsets enables more innovative scenarios that take advantage of multiple radio access networks as well as peer-to-peer links for positioning. Link selection is used to optimize the tradeo between the power consumption of participating nodes and the quality of target localization. The Geometric Dilution of Precision and the Cramer-Rao Lower Bound can be used as criteria for choosing the appropriate set of anchor nodes and corresponding measurements before attempting location estimation itself. This work analyzes the existing solutions for node selection in order to improve localization performance, and proposes a novel method based on utility functions. The proposed method is then extended to mobile and heterogeneous environments. Simulations have been carried out, as well as evaluation with real measurement data. In addition, some speci c cases have been considered, such as localization in ill-conditioned scenarios and the use of negative information. The proposed approaches have shown to enhance estimation accuracy, whilst signi cantly reducing complexity, power consumption and signalling overhead.