2 resultados para Communication complexity

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet Tra c, Internet Applications, Internet Attacks, Tra c Pro ling, Multi-Scale Analysis abstract Nowadays, the Internet can be seen as an ever-changing platform where new and di erent types of services and applications are constantly emerging. In fact, many of the existing dominant applications, such as social networks, have appeared recently, being rapidly adopted by the user community. All these new applications required the implementation of novel communication protocols that present di erent network requirements, according to the service they deploy. All this diversity and novelty has lead to an increasing need of accurately pro ling Internet users, by mapping their tra c to the originating application, in order to improve many network management tasks such as resources optimization, network performance, service personalization and security. However, accurately mapping tra c to its originating application is a di cult task due to the inherent complexity of existing network protocols and to several restrictions that prevent the analysis of the contents of the generated tra c. In fact, many technologies, such as tra c encryption, are widely deployed to assure and protect the con dentiality and integrity of communications over the Internet. On the other hand, many legal constraints also forbid the analysis of the clients' tra c in order to protect their con dentiality and privacy. Consequently, novel tra c discrimination methodologies are necessary for an accurate tra c classi cation and user pro ling. This thesis proposes several identi cation methodologies for an accurate Internet tra c pro ling while coping with the di erent mentioned restrictions and with the existing encryption techniques. By analyzing the several frequency components present in the captured tra c and inferring the presence of the di erent network and user related events, the proposed approaches are able to create a pro le for each one of the analyzed Internet applications. The use of several probabilistic models will allow the accurate association of the analyzed tra c to the corresponding application. Several enhancements will also be proposed in order to allow the identi cation of hidden illicit patterns and the real-time classi cation of captured tra c. In addition, a new network management paradigm for wired and wireless networks will be proposed. The analysis of the layer 2 tra c metrics and the di erent frequency components that are present in the captured tra c allows an e cient user pro ling in terms of the used web-application. Finally, some usage scenarios for these methodologies will be presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade, the most widespread approaches for traditional management were based on the Simple Network Management Protocol (SNMP) or Common Management Information Protocol (CMIP). However, they both have several problems in terms of scalability, due to their centralization characteristics. Although the distributed management approaches exhibit better performance in terms of scalability, they still underperform regarding communication costs, autonomy, extensibility, exibility, robustness, and cooperation between network nodes. The cooperation between network nodes normally requires excessive overheads for synchronization and dissemination of management information in the network. For emerging dynamic and large-scale networking environments, as envisioned in Next Generation Networks (NGNs), exponential growth in the number of network devices and mobile communications and application demands is expected. Thus, a high degree of management automation is an important requirement, along with new mechanisms that promote it optimally and e ciently, taking into account the need for high cooperation between the nodes. Current approaches for self and autonomic management allow the network administrator to manage large areas, performing fast reaction and e ciently facing unexpected problems. The management functionalities should be delegated to a self-organized plane operating within the network, that decrease the network complexity and the control information ow, as opposed to centralized or external servers. This Thesis aims to propose and develop a communication framework for distributed network management which integrates a set of mechanisms for initial communication, exchange of management information, network (re) organization and data dissemination, attempting to meet the autonomic and distributed management requirements posed by NGNs. The mechanisms are lightweight and portable, and they can operate in di erent hardware architectures and include all the requirements to maintain the basis for an e cient communication between nodes in order to ensure autonomic network management. Moreover, those mechanisms were explored in diverse network conditions and events, such as device and link errors, di erent tra c/network loads and requirements. The results obtained through simulation and real experimentation show that the proposed mechanisms provide a lower convergence time, smaller overhead impact in the network, faster dissemination of management information, increase stability and quality of the nodes associations, and enable the support for e cient data information delivery in comparison to the base mechanisms analyzed. Finally, all mechanisms for communication between nodes proposed in this Thesis, that support and distribute the management information and network control functionalities, were devised and developed to operate in completely decentralized scenarios.